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1. Old-Fangled Predicates
Predicates are supposed to slice reality neatly in two halves, one for

which the predicate holds, the other for which it fails. Yet far from being
razors, predicates tend to be dull knives that mangle reality. If reality is a
tomato and predicates are knives, then when these knives divide the
tomato, plenty of mush remains unaccounted for. Of course some knives
are sharper than others, just as some predicates are less vague than others.
“x is water” is certainly sharper than “x is beautiful.” But perfect
sharpness, perfect boundaries, and perfect separation seem only to obtain
in mathematics.

The vagueness inherent in many predicates became particularly evident
in the twentieth century. Quantum mechanics, the revival of certain ancient
paradoxes, and the philosophy of science all contributed to a growing
awareness that vagueness was ineliminable from many predicates.
Quantum mechanical superposition seems to allow mutually exclusive
simultaneous states. In searching for plausible interpretations of quantum
mechanics, some researchers attempted to do away with classical bivalent
logic. In its place they substituted multivalent quantum logics. Any logic
with more than two values forces its predicates to slice reality into more
than two parts.  

Ancient paradoxes involving heaps and baldness also pointed up the
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vagueness inherent in predicates. These paradoxes cut deeper to the
question of vagueness than the quantum logics. The various logics
physicists and philosophers invented to interpret quantum mechanics
were all embedded in standard predicate logic: correctness of proofs for the
new logics had to be verified using classical bivalent logic. Even the
predicates of the new logics were sharp in the sense that they divided
reality neatly; only now there were more divisions than in the customary
binary case. But with these ancient paradoxes boundaries became
irremediably fuzzy.

The paradox of the heap illustrates this point. Suppose we are given an
unlimited supply of identical pebbles. Set aside a large space and start
piling the pebbles on top of each other. Since our supply is unlimited, at
some point in the process we shall have a heap. Certain claims are
axiomatic:

(1) 0 pebbles cannot constitute a heap.

(2) If n pebbles constitute a heap, then so do n+1.

(3) If n pebbles do not constitute a heap, then neither do n–1.

Claim (3) is the contrapositive of (2). Now there is an obvious, intuitively
compelling claim that we are inclined to add:

(4) If n pebbles do not constitute a heap, then neither do n+1.

The rationale here is that if something is not a heap, then adding one tiny
pebble isn’t suddenly going to transform it into a heap. Together with the
principle of mathematical induction, (1) through (4) tell us that there are no
heaps—their extension is null.

But this conclusion is clearly unacceptable. With an unlimited supply
of pebbles we can fill up the known universe—10100 pebbles would
certainly do it. Thus for some finite (big) M, M pebbles must constitute a
heap. This is the paradox of the heap. If “x is a heap” is a binary predicate,
we must either retain (4), thereby rendering this predicate vacuous, or we
must discard (4), thereby equating the extension of “x is a heap” with
something like “x has at least 1,739,665 pebbles.” Neither of these
alternatives is appealing. The paradox of baldness is essentially the
same—how few hairs must a head possess to count as bald.

Finally, philosophers of science came to appreciate the inherent
vagueness of many predicates as they examined the historical development
of science. They found predicates evolving over time, getting sharper here,
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expanding their extension there, and generally not staying put. Yet as
predicates evolved, scientists continued to use the same linguistic forms to
designate the predicates. Thus scientists used the predicate “x is water”
before they knew about H2O, and they still use “x is water” even after
learning about atoms and molecules. Moreover, scientists assume some
sort of continuity in this predicate: “x is water” has not changed so much
that we can’t understand ancient manuscripts when they speak of water.

Nor has increased precision and theoretical understanding eliminated
vagueness from the predicates of science. Consider the predicate “x is
H2O,” with its recourse to atomic physics. Does substituting this
predicate for “x is water” yield a sharp, dichotomous predicate? It seems
to. The world of atoms is after all discrete and finite. There are only so
many configurations of matter. Either a piece of matter is constituted
entirely of H2O molecules or it isn’t. So far so good. But we want a
physical tie-in. We want to apply “x is H2O” to objects of experience.
Predicates always try to push reality into molds that reality in turn resists.
As in ethics so also in science, purity is rare and precious. In material
substances purity is statistically unlikely, with absolute purity
statistically negligible. It is highly improbable that “x is H2O” applies in a
strict sense to any macro-object in the physical world. Any reasonable
amount of water will contain impurities that render the predicate, strictly
speaking, inapplicable.

To accommodate slight impurities, we might try to install a new
predicate to model the concept water. Suppose we decide to go with “x is
H2O within one part per million.” Given our technology we can purify
water well beyond the tolerance this predicate imposes. But what happens
at the limit? What about samples of water that contain more than 1020

molecules of H2O and contain foreign elements so close to one part per
million that our technology cannot decide whether the predicate applies?
For such borderline cases the predicate will break down.

Still deeper problems remain. Scientists want their predicates well-
defined, rationally grounded, readily related to observation statements,
metaphysically unobjectionable, simple, natural, beautiful, elegant, etc. But
a predicate like “x is H2O within one part per million” is arbitrary, ad hoc,
and ugly. What’s more, it clearly depends on the more fundamental
predicate “x is H2O,” which it is supposed to supplant. In the end, neither
of these predicates is sharp and dichotomous.

Once philosophers, logicians, and scientists became convinced that the
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problem of vagueness would not go away—despite technology’s incessant
drive toward precision—they turned to alternate logics that might
reasonably model vague predicates. The philosophical literature is replete
with such logics. Of these, the most popular is the approach to vagueness
through fuzzy sets. Fuzzy logic has been a growth industry since the mid
1960s. As an approach to vagueness and uncertainty it has found
numerous valuable applications.

I want in this paper to sketch a probabilistic way of handling vague
predicates that constitutes not only an extension of fuzzy logic but also a
return, or sorts, to traditional bivalent logic. Within fuzzy logic, predicates
can assign any value in the unit interval [0,1]. Within the probabilistic logic
that I propose, predicates assign only the values 0 and 1, but with varying
probabilities. Vague predicates thus become traditional bivalent predicates
interpreted against a probabilistic backdrop. As a mathematical formalism
this approach subsumes the theory of fuzzy sets (at least first-order
fuzzy sets). At the heart of this formalism is a new type of predicate, the
random predicate. Laying out this formalism is the goal of this paper.
Applying and interpreting it will be taken up in a follow-up paper. Let’s
begin with some probabilistic preliminaries.

2. How to Randomize
The word “random” acts as a universal prefix in mathematics much like

the phrase “philosophy of” acts as a universal prefix in philosophy. Just
about any discipline can have the phrase “philosophy of” tacked in front,
thereby changing the discipline into a meta-discipline. Thus we have
philosophy of science, philosophy of history, philosophy of psychology,
philosophy of mathematics, etc. The self-referential philosophy of
philosophy has yet to catch on, nor has the philosophy of science become
sufficiently well-established to merit its own meta-discipline, the
philosophy of the philosophy of science.

In mathematics, the adjective “random” is likewise a blanket prefix. To
just about any mathematical object one can add the prefix “random” and
thereby obtain a new, probabilistically endowed mathematical object. Thus
variables become random variables, functions become random functions,
operators become random operators, and probability measures—the very
objects we require to make all these objects random—become random
probability measures. Thus while “philosophy of” is still waiting for its
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self-referential completion (i.e., “the philosophy of philosophy”),
“random” has long since attained this distinction (see Kallenberg, 1986).

To turn a run-of-the-mill mathematical object into a revved-up random
object is straightforward. In mathematics, almost everything is a set or
function. Those objects that are not are usually so big and general (cf.
categories and classes) that they first have to be converted into sets and
functions to do the average mathematician much good. Working within
one’s favorite brand of set theory (ZFC has been at the top of the charts
for some time), the mathematician finds that even the distinction between
sets and functions is ultimately illusory (functions are a special type of
set, so that functions collapse to sets). Now, traditional predicates are
defined on sets and divide a set into those elements for which the predicate
obtains and those for which it doesn’t. Our task, then, in defining random
predicates is to turn ordinary sets into random sets.

There is a perfectly standard way to do this: take a set S that needs to
be randomized, take a probability space (Ω,F,P), and consider a family of
functions from Ω into S, which we denote by ρ(Ω,S). ρ(Ω,S) is a
randomization of S by the probability space (Ω,F,P). Note that ρ(Ω,S) is
any subset of the space of all functions from Ω into S, which is commonly
denoted by SΩ. While this approach is perfectly standard, it is usually
only implicit in the work of probabilists. Nevertheless, this is what
probabilists do all the time, and it is worth considering some examples to
illustrate how general this approach really is.

Random variables come to mind first. A real random variable is
intuitively some random quantity that ranges over the real numbers R. R is
therefore the commonplace object we need to randomize. Next our recipe
calls for a probability space, say (Ω,F,P). Finally, we need to define a
collection of functions from Ω to R, call it ρ(Ω,R). For convenience, let’s
restrict ρ(Ω,R) to the measurable functions from Ω to R. Here, then, is the
collection of random variables.

Consider next random or stochastic processes. When students of
probability are first introduced to stochastic processes, they are typically
given the following definition: a stochastic process is an indexed collection
of random variables. Thus in the continuous case, a stochastic process is a
collection of random variables { Xt | t ∈  [0,∞) }, where t runs over the
nonnegative reals and represents time. From this picture it is difficult to
see what nonrandom mathematical object was randomized to yield the
stochastic process. But as probabilists have long recognized, the
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interesting behavior of a random process is not how the random variable
Xt(ω) varies at a fixed time slice t as ω varies in Ω, but rather how Xt(ω)
varies at a fixed random point ω as time t is allowed to run. In effect Xt(ω)
should be conceived as a function of t for fixed ω and not vice versa, as
students are initially given to believe.

As a function of t, Xt(ω) becomes a random path in R. This suggests
that the objects which our general approach must randomize is a collection
of paths in R. Thus, our nonrandom object in need of randomization is
some subset of R[0,∞) (the functions from the nonnegative reals to the
reals). For convenience, let us restrict ourselves to continuous paths. Then
our nonrandom object is C([0,∞),R), the continuous functions from [0,∞)
to R. To randomize this object we take some probability space (Ω,F,P)
and consider a family of functions from Ω to C([0,∞),R), call it
ρ(Ω,C([0,∞),R)). C([0,∞),R) comes endowed with certain nice topologies
which yield nice Borel sets. Thus ρ(Ω,C([0,∞),R)) is often taken to be
measurable functions X from Ω to C([0,∞),R). When this is all unwrapped
we see that for ω in Ω we get a function X(ω) in C([0,∞),R) which in turn
for t gives us a real number Xt(ω). By, on the other hand, first fixing t, we
get the original picture of a stochastic process as an indexed family of
random variables.

A technical point is worth mentioning here. When a set we want to
randomize is in fact a collection of functions, randomization has a
convenient alternative formulation. This formulation is entirely equivalent
to the one we just described. Thus when the collection S of objects we
want to randomize is a collection of functions from U to V (i.e., S is a
subset of VU), then the randomization ρ(Ω,S) can be reconfigured as
ρ(ΩxU,V). Here ρ(ΩxU,V) becomes a collection of functions f from ΩxU
to V which for fixed ω ∈  Ω is a function in S that sends u ∈  U to f(ω,u) ∈
V. In the preceding example ρ(Ω,C([0,∞),R)) can be reconfigured as
ρ(Ωx[0,∞),R), which can be defined as a collection of measurable functions
from Ωx[0,∞) (assuming an appropriate σ-algebra on the product space) to
R having continuous paths in the time variable t ∈ [0,∞).

Still more general examples exist. Thus mathematicians run random
paths within curved geometric spaces, e.g., Brownian motions on
Riemannian manifolds. They randomize linear operators between Banach
spaces. And yes, even the probabilities that make objects random can be
randomized. To summarize, if S is an arbitrary set and (Ω,F,P) an arbitrary
probability space, then by definition any collection of functions ρ(Ω,S)
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from Ω to S is a randomization of S. If S is a collection of functions from a
domain U to a target V, then this randomization can be taken as a
corresponding collection of functions ρ(ΩxU,V) from ΩxU to V, each of
which for fixed ω ∈  Ω becomes a function in S.

I want to make one last preliminary remark, which concerns the
probability space (Ω,F,P). The formalism I’ve just sketched for
randomizing mathematical objects incorporates an arbitrary probability
space. An ordered triple like (Ω,F,P) is the basic object of study in
probability theory. The notations Ω and P are virtually standard. Ω is any
old set, F is a σ-algebra on Ω, and P is a probability measure on F.
Nevertheless, mathematicians conceive of (Ω,F,P) as representing all the
randomness and information about the world that might interest us in a
given application. As more information becomes available or as
circumstances change, (Ω,F,P) does not have to be altered or augmented. If
we forgot to include anything in (Ω,F,P), say some class of events (Λ,L),
we can form the product space (Ω⊗ Λ,F⊗ L,P′), where P′ is a suitably
augmented probability on the product whose marginal distribution on Ω is
just P (here Ω⊗ Λ is the Cartesian product of Ω and Λ, and F⊗ L is the σ-
algebra induced on this Cartesian product by F and L). But then we
pretend that (Ω⊗ Λ,F⊗ L,P′) was the object we were studying all along,
which we accomplish by renaming (Ω⊗ Λ,F⊗ L,P′) as the original (Ω,F,P).
In this way (Ω,F,P) captures all the randomness in the world relevant to
any given inquiry, and in particular to the random predicates we shall be
defining.

3. Random Predicates
A collection of random predicates is a randomized collection of old-

fashioned predicates. For a universe of objects U, an old-fashioned
predicate P is an indicator function on U, i.e., a function from U to {0,1}
whose counterimage at 1 is the extension of the predicate. From this
definition it follows that relations can be subsumed under predicates. An
n-place relation can then be defined as any indicator function R on the n-
fold Cartesian product of U, i.e., a function from Un to {0,1}. It follows
that an n-place relation on U is a predicate on Un. Given a collection of
predicates on Un, call it C, we can randomize C as follows: take the
probability space (Ω,F,P) and consider a collection of functions from Ω to
C, call it ρ(Ω,C). For Φ in ρ(Ω,C) and for ω in Ω, Φ(ω) is therefore a
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predicate (in this case, an n-place relation). With this requirement ρ(Ω,C)
becomes a collection of random predicates, and each such Φ is a random
predicate.

For theoretical purposes this formulation is fine. But for practical
purposes we want a slightly different formulation of random predicates,
one that exploits the fact that predicates are functions (in this case,
indicator functions). As we saw in the last section, when randomizing
functions from U to V by means of the probability space (Ω,F,P),
randomization means taking a Cartesian product of the probability space
with the domain U and considering functions from that product space into
V. For any natural number n we therefore define an n-place random
predicate on U as a function P from ΩxUn to {0,1}. Thus an n-place
random predicate is such that for fixed ω ∈ Ω, P( ω,x1,…,xn) is a 0-1-valued
function of x1,…,xn (each of the xis belonging to U).

It will help to follow certain notational conventions to streamline our
discussion of random predicates. Henceforth italic capital Roman letters P,
Q, R, etc. will denote random predicates with respect to the probability
space (Ω,F,P) and the universe U. ω will denote a generic element of Ω.
Italic small Roman letters a, b, c, d, and e will denote constants in U. Italic
small Roman letters u, v, w, x, y, and z will denote variables ranging over U.
We can think of a 1-place random predicate P in three ways:

(1) As a joint 0-1-valued function of ω in Ω and u in U, P sends
(ω,u) to P(ω,u).

(2) For a fixed a in U P(ω,a) is a 0-1-valued random variable in ω
(ignore measurability problems). In this case we write Pa for
the random variable in ω.

(3) For a fixed ω in Ω P(ω,u) is a 0-1-valued function in u. In this
case we write Pω for the old-fashioned predicate on U
induced by ω.

(3) provides perhaps the clearest representation of P as a random
predicate. In standard probabilistic fashion we suppress the ω in Pω and
write P for Pω whenever ω is unspecified. If in fact Pω does not vary in ω
(i.e., is independent of ω), then P is just an old-fashioned predicate. In this
way random predicate logic subsumes ordinary predicate logic.

Similar observations hold for higher-place predicates. Thus, if Q is a 2-
place random predicate, then for fixed ω, Qω is a genuine 2-place predicate;
for fixed a and b, Qa,b is a 0-1-valued random variable on Ω; and for fixed a,
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Q(ω,a,u) is a 1-place random predicate in ω and u. We refer to ω as the
chance variable and to u as the predicate variable. When the chance
variable is fixed, the random predicate is just an ordinary predicate. When
the predicate variable is fixed, the random predicate is just a 0-1-valued
random variable. Thus a 0-place random predicate is just a 0-1-valued
random variable.

For simplicity, let us make the following general rule concerning
measurability: When in doubt, assume measurability. Thus, for the random
predicate P, Pa is a random variable for all a in U. If U itself has a measure-
theoretic structure, we can assume that P(ω,u) is simultaneously
measurable in ω and u. Dependencies among the random variables Pa are of
especial interest. Suppose, for instance, that P(x) is the 1-place random
predicate “x is a heap.” Suppose U contains all tightly packed collections
of pebbles with all pebbles the same size. Let a denote a collection of a
thousand pebbles and b denote a collection of a million pebbles. Clearly,
whenever Pω makes a out to be a heap, Pω must also make b out to be a
heap. It follows that the random variable Pa is always less than the random
variable Pb. Thus P[Pa = 1] ≤ P[Pb = 1] and P[Pa ≤ Pb] = 1. Thus to
understand the vague predicate “x is a heap” when interpreted as a random
predicate P, it is essential to consider dependencies among random
variables like Pa and Pb.

Since for fixed ω, random predicates are just old-fashioned predicates,
old-fashioned logic continues to apply. Moreover, since predicates are
indicator functions, logical connectives and quantifiers take on a
particularly simple form. We may summarize the logical operations of
random predicates as follows (suppressing chance and predicate variables
wherever possible):

(1)   ¬P  :=  1–P  

(2) P ∧  Q := min(P,Q)

(3) P ∨  Q := max(P,Q)

(4)   P→Q  :=  (¬P) ∨ Q 

(5)   ∀xP (x)  :=  P(x)  inf
x∈U
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(6)   ∃xP (x)  :=  P(x).sup
x∈U

To these we add the following derived operations:

(7)   P ↔ Q  :=  (P → Q) ∧ (Q → P)

(8)   P ⊕  Q  :=  (¬P ∧ Q ) ∨ (P ∧ ¬Q )  =  P + Q  mod 2

(9)   ∃!xP (x)  :=  ∃x [P(x) ∧ ∀y (x ≠y →¬P(y )].

(7) is just the biconditional, (8) is the symmetric difference, which can be
defined via modular addition, and (9) is unique existence. Observe that in
(9) the predicate x ≠ y is conceived as a random two-place predicate: define
E(ω,x,y) = 1 if x = y and 0 otherwise. Then (9) can be rewritten as,

(9′)   ∃!xP (x)  :=  ∃x [P(x) ∧ ∀y (¬E(x,y) →¬P(y )],

or alternatively,

(9″)   ∃!xP (x)  :=  ∃x [P(x) ∧ ∀y (P(y) → E(x,y)].

With random predicates in hand it is natural to ask whether some
predicates are more random than others. Since our primary task is to model
vagueness, this is a question of ranking predicates along a vagueness-
sharpness dimension. Some predicates will be sharper than others. Since
old-fashioned predicates are just random predicates for which the chance
variable is irrelevant, these nonrandom predicates constitute a natural
prototype for sharp predicates. Thus, for any partial ordering ≤ of random
predicates where S ≤ T means T is sharper than S, the maximal elements
under ≤ should comprise the standard nonrandom predicates (i.e., those
random predicates P for which P(ω,u) is constant in ω).

The minimal elements of such a partial ordering, however, are not as
straightforward. There is in fact a single minimal element which
distinguishes itself as the vaguest predicate. But to understand how this
vaguest of random predicates achieves this distinction, it is necessary to
understand the special role that the probability 1/2 plays in the theory of
probability. Consider, for instance, a random walk on the integers which
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has probability 1/2 of moving either up or down a single integer. Such a
random walk will run through all the integers (this happens with
probability 1). But as soon as the probability p of moving up is different
from 1/2, the random walk drifts, either continually up if p is greater than
1/2, or continually down if p is less than 1/2 (this happens with
probability 1). In neither case does the full range of integers get exhausted
as when p equals 1/2.  

Similarly, with a random predicate P, if for a given a in U the random
variable Pa is such that P[Pa = 0] = P[Pa = 1] = 1/2, then it is impossible
by repeated independent applications of the random variable Pa to
determine whether the predicate tends to affirm or deny a. Half the time
Pa will say yes to a (i.e., equal 1), the other half it will say no (i.e., equal
0). If the probability differed from 1/2—if say P[Pa = 1] > 1/2—then
independent, identically distributed samples of Pa will indicate a tendency
of P to say yes to a. This is just a consequence of the strong law of large
numbers, which says that sample averages approximate population
averages, with the approximation becoming better and better as the sample
size increases.

For a predicate P, dependencies between objects a and b in U can
complicate matters. Suppose P[Pa = 1] = P[Pb = 1] = 1/2, but
P[Pb = 1|Pa = 1] > P[Pb = 1]. Then knowing P holds for a makes it more
likely that P holds for b. Such dependencies can be exploited. Hence, even
though for b taken by itself we cannot by repeated sampling decide
whether P holds (on average) for b, in conjunction with a a decision is
possible. Thus for P to be vague we shall want not only P[Px = 1] = 1/2
for all x in U, but also {Px : x ∈ U} to be a collection of independent
random variables. There is only one random predicate satisfying these
constraints. We shall denote it by H. H is the vaguest random predicate.1

This analysis marks the extremes of the vagueness-sharpness
dimension. For any partial ordering ≤ that ranks random predicates
according to sharpness, H is not simply a minimal element: every other
random predicate is strictly sharper than H. As for the nonrandom, old-
                                                

1H has the following mathematical construction: Take (Ω,F,P) so that Ω is the
collection of all functions from U into {0,1}—this is just the (possibly infinite)
Cartesian product of {0,1} with itself "U times." Let F be the Borel sets induced by the
product topology and let P  be the infinite product measure on Ω of the measure on
{0,1} which assigns equal mass (i.e., 1/2) to {0} and {1} (see Bauer 1981). Then ω in
Ω is just a function from U to {0,1} (i.e., an old-fashioned predicate), and H is just the
evaluation map: H(ω,x) := ω(x).
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fashioned predicates embedded among the genuinely random predicates,
these are maximal elements of ≤. To examine what happens between these
extremes, I want first to take an excursion into the theory of fuzzy sets.
The probabilistic intuitions which are present in random predicates, but
absent from fuzzy sets, make it possible distinguish random predicates
according to vagueness and sharpness in a way not possible for fuzzy sets.
As we shall see, random predicates entail a more powerful mathematical
theory than fuzzy sets. In fact, random predicates readily incorporate
fuzzy sets.

4. Fuzzy Sets
We have been considering random predicates on the universe U. U also

supports fuzzy sets. A fuzzy set on U is just a function µ: U → [0,1].2 A
crisp set is a fuzzy set whose only values are 0 and 1, i.e., an old-
fashioned set, or equivalently, an indicator function. µ(a) denotes the
degree or grade of membership in the fuzzy set µ. Thus µ(a) = 0 signifies
total exclusion from µ, whereas µ(a) =1 signifies total inclusion in µ.
Interpreting the intermediate values of µ, however, is less perspicuous.
Certainly µ(a) < µ(b) means b has a higher degree of membership in µ than
a. Thus µ gives us reliable ordinal information. Still, we expect more than
just ordinal properties from a function taking values in the unit interval.3

If ordinal considerations were the sole concern in distinguishing degree
of membership, then for any strictly increasing function f on the unit
interval (f : [0,1] → [0,1] where f(s) < f(t) for s < t), foµ does as much
effective work as the fuzzy set µ. Clearly we want to exploit more
structure than just the ordinal properties of [0,1]. For simplicity let us
take U to be the unit interval [0,1] as well. Consider the crisp set µ =
1[1/2,1], the indicator function on the set [1/2,1]. If any ordinal
transformation of µ is permissible, then for a very small positive
ε, εµ = ε1[1/2,1] is equivalent to µ (εµ is the product of ε and µ). This,
however, is counterintuitive. εµ is no longer crisp and assigns zero or

                                                
2Actually, µ is a membership function. If µ: U → M, i.e., µ is a function from U to

some membership set M, then µ induces the fuzzy set {(x,µ(x)) : x∈ U}. Thus the fuzzy
set is the graph of µ. Since µ incorporates all mathematical information of interest, I
won't distinguish between membership functions and fuzzy sets. See Kaufmann (1975, 6)
for more details.

3For the difference between ordinal and interval scales, see Torgerson (1958).
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negligible value to all elements of U = [0,1]. Thus εµ is virtually without
members whereas µ has half the space U for its members. Even worse is a
strictly increasing transformation like εµ + 1/2 for very small positive ε.
Now every member of U is assigned a value arbitrarily close to 1/2. Thus
any crisp set can be taken to a fuzzy set for which every element has only
a middling degree of membership.

I am belaboring this point because I want to stress the need for fixed
references. µ(a) = 0 means a is definitely not a member of µ; µ(b) = 1
means b is definitely a member of µ. Thus any strictly increasing function
f on the unit interval must have the additional property of sending 0 to 0
and 1 to 1 (f(0) = 0 and f(1) = 1). Even this requirement, however, is
inadequate for characterizing fuzzy sets. With U still equal to [0,1], if we
take the fuzzy set ν equal to ε1[0,1/2) + (1–ε)1[1/2,1] for an arbitrarily small
positive ε, then intuition suggests that ν and µ = 1[1/2,1] are virtually
identical. Yet if we consider the function f(x) = xn for sufficiently large
positive n, foµ = µ whereas foν is virtually zero—the intuition for foµ and
foν are completely different.

If an ordinal structure that preserves the extremes 0 and 1 is the sole
consideration in scaling fuzzy sets, our intuitions regarding fuzziness are
not only unsatisfied but also unsatisfiable. In saying that they are
unsatisfiable, I mean that a coherent notion of sharpness for fuzzy sets is
not possible. To the sharpness of fuzzy sets corresponds a
straightforward intuition. For fuzzy sets σ and τ, τ is sharper than σ if any
element of U with a high degree of membership in σ has an even higher
degree of membership in τ, whereas any element of U with a low degree of
membership in σ has an even lower degree of membership in τ.

Implicit here is the question of a third reference point. 0 and 1 have
already been fixed. But what is the cutoff above which degree of
membership is high but below which degree of membership is low?
Probabilities offer a natural cutoff—1/2. Games where the probability of
winning is 1/2 (resp. less than 1/2 and greater than 1/2) are fair games
(resp. losing and winning games). This phenomenon comes up in random
walks, with Brownian motion, and thus on Wall Street and in Las Vegas.
Probabilities different from 1/2 can be exploited for profit. Probabilities
equal to 1/2 cannot.4 Now fuzzy sets offer no such natural cutoff. As Klir
and Folger (1988, 11) observe in their text on fuzzy sets, “it is important

                                                
4There are some deep results from the theory of martingales that confirm this claim.
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to realize that membership grades are not probabilities.” Thus fuzzy sets
cannot look to probability for such a cutoff. Yet without a cutoff no
coherent notion of sharpness for fuzzy sets is possible.

To see this, consider the crisp set µ = 1[1/2,1] and the fuzzy set πεδ =
ε1[1,1/2) + (1–δ)1[1/2,1] on U = [0,1]. ε and δ are both positive real
numbers strictly between 0 and 1. Now, if ε and δ are both very small,
then our intuition is that on [0,1/2) πεδ has a low degree of membership
while on [1/2,1] πεδ has a high degree of membership. Moreover, since the
crisp set µ has still a higher degree (resp. lower degree) of membership
where πεδ has a high degree (resp. low degree) of membership, µ is sharper
than πεδ. This is as it should be. But if now we start fiddling with ε and δ,
we find that sharpness must remain a murky intuition that cannot be
formalized. Any formalization of sharpness must certainly involve a
partial ordering: if τ is sharper than σ and σ is sharper than ρ, then τ must
be sharper than ρ. This follows from the sharper fuzzy set indicating a
higher (resp. lower) degree of membership where the duller fuzzy set
indicates a high (resp. low) degree of membership.

If we now reconsider µ and πεδ, we find that for small ε and δ, µ
must—if our intuition means anything—be sharper than πεδ. Moreover,
for very small ε and δ, if we augment these slightly, say to ε′ and δ′, then
πεδ must be sharper than πε′δ′—again, if our intuition means anything. By
transitivity µ will be sharper than πε′δ′. But how much can we vary ε and
δ before running into trouble? Eventually we shall run into trouble, for if
we choose ε and δ close to 1 then πεδ will have much more in common
with 1[0,1/2), the complement of µ, than with µ itself. For ε and δ close to
zero, augmenting these slightly to ε′ and δ′, we find πεδ sharper than πε′δ′.
But for ε and δ close to one, augmenting these to ε′ and δ′ so that they
become still closer to one, we find πεδ less sharp than πε′δ′ (πε′δ′ is now
approaching the complement of µ, i.e., 1[0,1/2)). Something goes wrong as
we keep increasing ε and δ. The problem lies with the absence of a cutoff.
Unless there is a cutoff which tells us when an element of U has a high
(resp. low) degree of membership which can be made higher (resp. lower)
by taking the membership function closer to 1 (resp. 0), sharpness cannot
be a transitive relation on fuzzy sets.

We have two reference points for fuzzy sets, 0 and 1. If we should add
a third reference point α (where 0 < α  < 1), then it is possible to define a
coherent sharpness relation for the fuzzy sets on U. Thus for fuzzy sets σ
and τ, τ is sharper than σ if for all u ∈ U
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(1) τ(u) ≥ σ(u) whenever σ(u) > α and

(2) τ(u) ≤ σ(u) whenever σ(u) < α.

Since grade of fuzzy-set membership is not reducible to probability or any
other more primitive notion, α  is arbitrary. Moreover, points u ∈  U for
which σ(u) = α become indifference points, and irrelevant to the sharpness
relation. Still, this definition provides a coherent notion of randomness for
fuzzy sets, and introduces an idea that will help us to model sharpness for
random predicates in the next section. Because probabilities undergird
random predicates, sharpness relations on random predicates will have a
natural cutoff, namely, α = 1/2.

In closing this discussion of fuzzy sets, I want to demonstrate that the
theory of random predicates subsumes the theory of fuzzy sets. The
result is stated for families of 1-place predicates, but can be extended to
families of finite-place predicates more generally.

Proposition 4.1. Let U be an arbitrary nonempty set. Suppose
{µα: α∈J} is an arbitrary collection of fuzzy sets on U, i.e.,
µα: U → [0,1] for each α in the indexing set J. Then there is a probability
space (Ω,F,P) and a family of random predicates {Qα: α∈J} on U such
that µα(u) = P{ω∈Ω: Q α(ω,u) = 1} for all u ∈  U and α ∈  J.

Proof. Let Ω be the product space {0,1}JxU and let F be the Borel sets
induced by the product topology. Let pαu be the (unique) probability on
{0,1} satisfying pαu({1}) = µα(u). Define P as the product measure on Ω
= {0,1}JxU of all the pαus for α ∈ J and u ∈ U. ω ∈  Ω is a function from
JxU into {0,1}. Hence we can define Qα(ω,u) = ω(α,u). It is immediate
that µα(u) = P{ω∈Ω: Q α(ω,u) = 1}. «

The Qαs that model the µαs are all stochastically independent. Thus
the entire collection of random variables Qα(ω,u) (thinking of ω as variable,
and α  and u as indexing parameters) are independent. This is a direct
consequence of P being a product measure. Hence for any collection of
fuzzy sets {µα: α∈J}, the degree of membership in µα of some u ∈  U has
no influence, causally or otherwise, on the degree of membership in µβ of
some v ∈  U (α and β distinct). Because dependencies, conditioning, and
causal influence is the stuff of probability theory, we can rightly expect a
richer theory of vagueness from random predicates than from fuzzy sets.
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5. Sharpness
The random predicate T is sharper than the random predicate S if

whenever S has a high (resp. low) probability of obtaining for u ∈  U, then
T has an even higher (resp. lower) probability of obtaining for u. Since we
are dealing with probabilities, we use 1/2 as a cutoff. Thus for S to have a
high (resp. low) probability of obtaining for u means P[Su = 1] > 1/2 (resp.
< 1/2). Those u for which P[Su = 1] = 1/2 will constitute indifference
points: a sharper predicate T can either favor u in its extension (i.e.,
P[Tu = 1] > 1/2), or tend to place it in the extension of its complement
(i.e., P[Tu = 0] = P[¬ Tu = 1] > 1/2), or continue to be indifferent about u
(i.e., P[Tu = 1] = 1/2). Note that we take the relations “being sharper than”
and “having higher probability than” to permit equality (i.e., weakly, not
strictly). Thus technically speaking, S will be sharper than itself, and T
will have a higher probability of obtaining for u than S even if P[Tu = 1] =
P[Su = 1]. This convention avoids certain inconveniences that arise with
strict inequality.

I want next to introduce four sharpness relations on random predicates:
sharper, indistinguishably sharper, almost certainly sharper, and
stochastically sharper. These relations differ in the way they exploit the
underlying probabilistic structure of random predicates. The way I have
listed them, they become progressively weaker in the sense of logical
implication. Thus “T sharper than S” implies “T indistinguishably sharper
than S” implies “T almost certainly sharper than S” implies “T
stochastically sharper than S.” Throughout our discussion the underlying
probability space is (Ω,F,P) and the universe on which the random
predicates are defined is U.

Definition 5.1. T is sharper than S if for all u ∈ U

(1) whenever P[Su = 1] > 1/2, Tu ≥ Su,

(2) whenever P[Su = 0] > 1/2, Tu ≤ Su.

In this case we write S ∠ T.
Definition 5.2. T is indistinguishably sharper than S if there is some set

Z of probability zero in Ω (i.e., P(Z) = 0) such that for all u ∈  U

(1) whenever P[Su = 1] > 1/2, Tu ≥ Su on Ω–Z,

(2) whenever P[Su = 0] > 1/2, Tu ≤ Su on Ω–Z.

In this case we write S ∠ i T. Note that the set Z is entirely independent of
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any given u. In effect, if we could throw away Z from Ω, definitions 5.1
and 5.2 would coincide.

Definition 5.3. T is almost certainly sharper than S if for all u ∈ U

(1) whenever P[Su = 1] > 1/2, P[Tu  ≥ Su] = 1,

(2) whenever P[Su = 0] > 1/2, P[Tu  ≤ Su] = 1.

In this case we write S ∠ ac T. Note that for each u there is a P-null set Zu
off of which Tu  ≥ Su (resp. Tu  ≤ Su). If U is uncountable, the union of all
these Zu’s can have positive probability.

Definition 5.4. T is stochastically sharper than S if for all u ∈ U

(1) whenever P[Su = 1] > 1/2, P[Tu = 1] ≥ P[Su = 1]

(2) whenever P[Su = 0] > 1/2, P[Tu = 0] ≥ P[Su = 0].

In this case we write S ∠ s T. Note that with stochastic sharpness Tu and
Su can no longer be compared directly for different ω in Ω. There can be
sets A and B of positive P-probability such that for ω ∈  A Su(ω) > Tu(ω)
and for ω ∈  B Tu(ω) < Su(ω). The one requirement is that when P[Su = 1]
> 1/2 (resp. P[Su = 0] > 1/2), then Tu is on average bigger (resp. smaller)
than Su.

Proposition 5.5. ∠  ⇒  ∠ i ⇒  ∠ ac ⇒  ∠ s, where each implication is
strict.

Proof. ∠  is just ∠ i where the null probability set Z is empty. Thus the
first implication holds. For the second implication, if Z is P-null, then
P(Ω–Z) =1 implying that Tu ≥ Su on Ω–Z (resp. Tu ≤ Su on Ω–Z) entails
P[Tu  ≥ Su] = 1 (resp. P[Tu  ≤ Su] = 1). For the final implication, if for a
fixed u, P[Tu ≥ Su] = 1 (resp. P[Tu ≤ Su] = 1), then there is a P-null set Zu
(note the dependence of this set on u) off of which Tu ≥ Su (resp. Tu ≤ Su),
i.e., on Ω–Zu, Tu ≥ Su (resp. Tu ≤ Su). Thus the collection of ωs from
Ω–Zu for which Su(ω) = 1 is contained in the collection of ωs from Ω–Zu
for which Tu(ω) = 1, i.e.,

{ω∈Ω–Z u: Su(ω) = 1} ⊂  {ω∈Ω–Z u: Tu(ω) = 1}.

Because probabilities are monotone it follows that

P({ω∈Ω–Z u: Su(ω) = 1}) ≤ P({ω∈Ω–Z u: Tu(ω) = 1}).

But this just says P[Tu = 1] ≥ P[Su = 1]. The opposite case of Tu ≤ Su is
handled similarly. Thus the third implication holds.

To see that these implications are strict we construct three counter-
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examples. In each case the probability space (Ω,F,P) is ([0,1],B([0,1]),λ),
i.e., Lebesgue measure on the unit interval, and the universe U is [0,1] as
well. Our random predicates S will be (Borel measurable) indicator
functions on the Cartesian product [0,1]x[0,1].

We consider random predicates P, Q, R, S, and T:

(1) P(ω,u) := 0

(2) Q(ω,u) := 1 if ω is rational, 0 otherwise

(3) R(ω,u) := 1 if ω = u, 0 otherwise

(4) S(ω,u) := 1 if –1/8 ≤ ω – u ≤ 1/8, 0 otherwise

(5) T(ω,u) := 1 if 1/8 ≤ ω – u ≤ 1/4, 0 otherwise.

It is immediate that P ∠ i Q without P ∠  Q, Q ∠ ac R without Q ∠ i R, and S
∠ s T without S ∠ ac T. «

Our four characterizations of sharpness have analogues in the theory of
stochastic processes. There two stochastic processes Xt and Yt defined on
(Ω,F,P) are indistinguishable if for almost every ω ∈  Ω, the entire paths
(i.e., functions in t) given by Xt(ω) and Yt(ω) are identical. Alternatively
Xt and Yt are modifications of each other if for every fixed t, Xt and Yt
agree off of a set of probability zero. These two notions correspond
respectively to ∠ i and ∠ ac. Moreover, the idea of stochastic convergence
motivates ∠ s.

5

Sharpness in its purest sense is given by ∠ . Thus when we speak of
sharpness, we shall mean ∠ . ∠ i and ∠ ac are clearly derivative notions. ∠ i
gives us ∠  if we just excise a set of probability zero from Ω. Note that if
the universe U is countable, then ∠ ac and ∠ i coincide: if S ∠ ac T, then for
each u ∈ U there is a P-null set Zu for which the right dominance relation
holds. The grand union of these Zu’s is a set Z which is also P-null because
it is the countable union of sets of measure zero. This is the Z we need so
that S ∠ i T. ∠ s was included for completeness.

Let us next prove a monotone convergence result for ∠ . To state this
result we need a definition.

Definition 5.6. The indifference set of a random predicate S is the set of

                                                
5See Elliott (1982, 13) for the difference between indistinguishable stochastic

processes and processes that are modifications of each other. Indistinguishability is a
much stronger notion. For stochastic convergence (also known as convergence in
probability) see Bauer (1981, 93).
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all u ∈  U such that P[Su = 1] = 1/2. Denote this set by ΙΝ(S). If the
sequence of random predicates {Si} is monotone increasing in ∠ , i.e., S0 ∠
S1 ∠  S2 ∠  …, then ΙΝ(Si) ⊃  ΙΝ(Si+1) for all i. Thus we can extend the
notion of an indifference set to the monotone sequence {Si}:

ΙΝ({S i})  :=  ΙΝ(S i) .∩
0≤ i <∞

Proposition 5.7. Let {Si} be a sequence of random predicates on the
probability space (Ω,F,P) and the universe U. Suppose {Si} is monotone
increasing in ∠ . Then there is a random predicate S which is sharper than
all the Si’s, and to which the sequence {Si} converges pointwise off of the
indifference set ΙΝ({Si}), i.e., for ω ∈ Ω and u ∈  U – ΙΝ({S i}), Si(ω,u) →
S(ω,u).

Proof. If u ∈ U – ΙΝ({S i}), then there is some m (depending on u) such
that P[Sm

u = 1] is different from 1/2. Let us assume that P[Sm
u = 1] > 1/2

(the case P[Sm
u = 1] < 1/2 is handled similarly). Since the Sis are monotone

increasing in ∠ , it follows that for all q > p ≥ 0, P[Sm+q
u = 1] ≥

P[Sm+p
u = 1] > 1/2, and Sm+q

u ≥ Sm+p
u. Since this last inequality holds for

all ω ∈  Ω it follows that Si
u is monotone increasing after a certain point

and therefore converges (pointwise). This defines S off of ΙΝ({S i}). On
ΙΝ({Si}) S can be arbitrarily defined. «

At the end of section 3 we identified the extremes of any sharpness
relation on random predicates. The sharpest predicates were the
nonrandom (old-fashioned) predicates embedded among the random
predicates. These serve as maximal elements. Alternatively, the dullest
predicate H was one where {Hu : u ∈  U} is a stochastically independent
family of random variables such that P[Hu = 1] = 1/2 for all u. As we can
now see, these intuitions are confirmed in ∠ . The nonrandom predicates
are indeed maximal elements of ∠ , and for any random predicate S, H ∠  S.
Actually, the assumption that all the Hus be stochastically independent is
unnecessary; it is enough that P[Hu = 1] = 1/2 for all u. Note that ∠  is
strictly speaking a preorder, not a partial order, inasmuch as it is possible
that S ∠ T and T ∠ S without S and T being equal.
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