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1. Randomness 
For many natural scientists, design, conceived as the action of an 

intelligent agent, is not a fundamental creative force in nature. Rather, 
material mechanisms, characterized by chance and necessity and ruled by 
unbroken laws, are thought sufficient to do all nature’s creating. Darwin’s 
theory epitomizes this rejection of design.  

But how do we know that nature requires no help from a designing 
intelligence? Certainly, in special sciences ranging from forensics to 
archaeology to SETI (the Search for Extraterrestrial Intelligence), appeal 
to a designing intelligence is indispensable. What’s more, within these 
sciences there are well-developed techniques for identifying intelligence. 
What if these techniques could be formalized, applied to biological 
systems, and registered the presence of design? Herein lies the promise of 
intelligent design (or ID, as it is now abbreviated). 

My own work on ID began in 1988 at an interdisciplinary conference 
on randomness at Ohio State University. Persi Diaconis, a well-known 
statistician, and Harvey Friedman, a well-known logician, convened the 
conference. The conference came at a time when “chaos theory” or 
“nonlinear dynamics” were all the rage and supposed to revolutionize 
science. James Gleick, who had written a wildly popular book titled 
Chaos, covered the conference for the New York Times.  

For all its promise, the conference ended on a thud. No conference 
proceedings were ever published. Despite a week of intense discussion, 
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Persi Diaconis summarized the conference with one brief concluding 
statement: “We know what randomness isn’t, we don’t know what it is.” 
For the conference participants, this was an unfortunate conclusion. The 
point of the conference was to provide a positive account of randomness. 
Instead, in discipline after discipline, randomness kept eluding our best 
efforts to grasp it. 

That’s not to say there was a complete absence of proposals for 
characterizing randomness. The problem was that all such proposals 
approached randomness through the back door, first giving an account of 
what was nonrandom and then defining what was random by negating 
nonrandomness (complexity-theoretic approaches to randomness like that 
of Chaitin [1966] and Kolmogorov [1965] all shared this feature). For 
instance, in the case of random number generators, they were good so long 
as they passed a set of statistical tests. Once a statistical test was found 
that a random number generator no longer passed, the random number 
generator was discarded as no longer providing suitably random digits.  

As I reflected on this asymmetry between randomness and 
nonrandomness, it became clear that randomness was not an intrinsic 
property of objects. Instead, randomness was a provisional designation for 
describing an absence of perceived pattern until such time as a pattern was 
perceived, at which time the object in question would no longer be 
considered random. In the case of random number generators, for instance, 
the statistical tests relative to which their adequacy was assessed 
constituted a set of patterns. So long as the random number generator 
passed all these tests, it was considered good and its output was 
considered random. But as soon as a statistical test was discovered that the 
random number generator no longer passed, it was no longer good and its 
output was considered nonrandom. George Marsaglia, a leading light in 
random number generation who spoke at the 1988 randomness conference, 
made this point beautifully, detailing one failed random number generator 
after another.  

I wrote up these thoughts in a paper titled “Randomness by Design” 
(1991; see also Dembski 1998a). In that paper I argued that randomness 
should properly be thought of as a provisional designation that applies 
only so long as an object violates all of a set of patterns. Once a pattern is 
added to the set which the object no longer violates but rather conforms to, 
the object suddenly becomes nonrandom. Randomness thus becomes a 
relative notion, relativized to a given set of patterns. As a consequence, 
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randomness is not something fundamental or intrinsic but rather dependent 
on and subordinate to an underlying set of patterns or design.  

Relativizing randomness to patterns provides a convenient framework 
for characterizing randomness formally. Even so, it doesn’t take us very 
far in understanding how we distinguish randomness from nonrandomness 
in practice. If randomness just means violating each pattern from a set of 
patterns, then anything can be random relative to a suitable set of patterns 
(each one of which is violated). In practice, however, we tend to regard 
some patterns as more suitable for identifying randomness than others. 
This is because we think of randomness not merely as patternlessness but 
also as the output of chance and therefore representative of what we might 
expect from a chance process.  

To see this, consider the following two sequences of coin tosses (1 = 
heads, 0 = tails):  

(A) 11000011010110001101111111010001100011011001110111 
 00011001000010111101110110011111010010100101011110  

and 

(B) 11111111111111111111111111111111111111111111111111 
 00000000000000000000000000000000000000000000000000.  

Both sequences are equally improbable (having probability 1 in 2100 or 
approximately 1 in 1030). The first sequence was produced by flipping a 
fair coin whereas the second was produced artificially. Yet even if we 
knew nothing about the causal history of the two sequences, we clearly 
would regard the first sequence as more random than the second. When 
tossing a coin, we expect to see heads and tails all jumbled up. We don’t 
expect to see a neat string of heads followed by a neat string of tails. Such 
a sequence evinces a pattern not representative of chance.  

In practice, then, we think of randomness not just in terms patterns that 
are alternately violated or conformed to but also in terms of patterns that 
are alternately easy or hard to obtain by chance. What then are the patterns 
that are hard to obtain by chance and that in practice we use to eliminate 
chance? Ronald Fisher’s theory of statistical significance testing provides 
a partial answer. My work on the design inference attempts to round out 
Fisher’s answer.  
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2. The Design Inference 
In Fisher’s (1935, 13–17) approach to significance testing, a chance 

hypothesis is eliminated provided an event falls within a prespecified 
rejection region and provided that rejection region has sufficiently small 
probability with respect to the chance hypothesis under consideration. 
Fisher’s rejection regions therefore constitute a type of pattern for 
eliminating chance. The picture here is of an arrow hitting a target. 
Provided the target is small enough, chance cannot plausibly explain the 
arrow hitting the target. Of course, the target must be given independently 
of the arrow’s trajectory. Movable targets that can be adjusted after the 
arrow has landed will not do (one can’t, for instance, paint a target around 
the arrow after it has landed).  

In extending Fisher’s approach to hypothesis testing, the design 
inference generalizes the types of rejection regions capable of eliminating 
chance. In Fisher’s approach, to eliminate chance because an event falls 
within a rejection region, that rejection region must be identified prior to 
the occurrence of the event. This is to avoid the familiar problem known 
among statisticians as “data snooping” or “cherry picking,” in which a 
pattern is imposed on an event after the fact. Requiring the rejection 
region to be set prior to the occurrence of an event safeguards against 
attributing patterns to the event that are factitious and that do not properly 
preclude its occurrence by chance.  

This safeguard, however, is unduly restrictive. In cryptography, for 
instance, a pattern that breaks a cryptosystem (known as a cryptographic 
key) is identified after the fact (i.e., after one has listened in and recorded 
an enemy communication). Nonetheless, once the key is discovered, there 
is no doubt that the intercepted communication was not random but rather 
a message with semantic content and therefore designed. In contrast to 
statistics, which always identifies its patterns before an experiment is 
performed, cryptanalysis must discover its patterns after the fact. In both 
instances, however, the patterns are suitable for eliminating chance. 
Patterns suitable for eliminating chance I call specifications.  

Although my work on specifications can, in hindsight, be understood 
as a generalization of Fisher’s rejection regions, I came to this 
generalization without consciously attending to Fisher’s theory (even 
though as a probabilist I was fully aware of it). Instead, having reflected 
on the problem of randomness and the sorts of patterns we use in practice 
to eliminate chance, I noticed a certain type of inference that came up 
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repeatedly. These were small probability arguments that, in the presence 
of a suitable pattern (i.e., specification), not merely eliminated a single 
chance hypothesis but rather swept the field clear of chance hypotheses. 
What’s more, having swept the field of chance hypotheses, these 
arguments inferred to a designing intelligence.  

Here is a typical example. Suppose that two parties, call them A and 
B, have the power to produce exactly the same artifact, call it X. Suppose 
further that producing X requires so much effort that it is easier to copy X 
once X has already been produced than to produce X from scratch. For 
instance, before the advent of computers, logarithmic tables had to be 
calculated by hand. Although there is nothing esoteric about calculating 
logarithms, the process is tedious if done by hand. Once the calculation 
has been accurately performed, however, there is no need to repeat it.  

The problem, then, confronting the manufacturers of logarithmic 
tables was that after expending so much effort to compute logarithms, if 
they were to publish their results without safeguards, nothing would 
prevent a plagiarist from copying the logarithms directly and then simply 
claiming that he or she had calculated the logarithms independently. To 
solve this problem, manufacturers of logarithmic tables introduced 
occasional—but deliberate—errors into their tables, errors which they 
carefully noted to themselves. Thus, in a table of logarithms that was 
accurate to eight decimal places, errors in the seventh and eight decimal 
places would occasionally be introduced.  

These errors then served to trap plagiarists, for even though plagiarists 
could always claim they computed the logarithms correctly by 
mechanically following a certain algorithm, they could not reasonably 
claim to have committed the same errors. As Aristotle remarked in his 
Nichomachean Ethics (McKeon 1941, 1106), “It is possible to fail in 
many ways, . . . while to succeed is possible only in one way.” Thus, when 
two manufacturers of logarithmic tables record identical logarithms that 
are correct, both receive the benefit of the doubt that they have actually 
done the work of calculating the logarithms. But when both record the 
same errors, it is perfectly legitimate to conclude that whoever published 
second plagiarized. 

To charge whoever published second with plagiarism, of course, goes 
well beyond merely eliminating chance (chance in this instance being the 
independent origination of the same errors). To charge someone with 
plagiarism, copyright infringement, or cheating is to draw a design 
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inference. With the logarithmic table example, the crucial elements in 
drawing a design inference were the occurrence of a highly improbable 
event (in this case, getting the same incorrect digits in the seventh and 
eighth decimal places) and the match with an independently given pattern 
or specification (the same pattern of errors was repeated in different 
logarithmic tables).  

My project, then, was to formalize and extend our commonsense 
understanding of design inferences so that they could be rigorously 
applied in scientific investigation. That my codification of design 
inferences happened to extend Fisher’s theory of statistical significance 
testing was a happy, though not wholly unexpected, convergence. At the 
heart of my codification of design inferences was the combination of two 
things: improbability and specification. Improbability, as we shall see in 
the next section, can be conceived as a form of complexity. As a 
consequence, the name for this combination of improbability and 
specification that has now stuck is specified complexity or complex 
specified information.  

 
 

3. Specified Complexity 
The term specified complexity is about thirty years old. To my 

knowledge origin-of-life researcher Leslie Orgel was the first to use it. In 
his 1973 book The Origins of Life he wrote: “Living organisms are 
distinguished by their specified complexity. Crystals such as granite fail to 
qualify as living because they lack complexity; mixtures of random 
polymers fail to qualify because they lack specificity” (189). More 
recently, Paul Davies (1999, 112) identified specified complexity as the 
key to resolving the problem of life’s origin: “Living organisms are 
mysterious not for their complexity per se, but for their tightly specified 
complexity.” Neither Orgel nor Davies, however, provided a precise 
analytic account of specified complexity. I provide such an account in The 
Design Inference (1998b) and its sequel No Free Lunch (2002). In this 
section I want briefly to outline my work on specified complexity. 

Orgel and Davies used specified complexity loosely. I’ve formalized it 
as a statistical criterion for identifying the effects of intelligence. Specified 
complexity, as I develop it, is a subtle notion that incorporates five main 
ingredients: (1) a probabilistic version of complexity applicable to events; 
(2) conditionally independent patterns; (3) probabilistic resources, which 
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come in two forms, replicational and specificational; (4) a specificational 
version of complexity applicable to patterns; and (5) a universal 
probability bound. Let’s consider these briefly. 

Probabilistic complexity. Probability can be viewed as a form of 
complexity. To see this, consider a combination lock. The more possible 
combinations of the lock, the more complex the mechanism and 
correspondingly the more improbable that the mechanism can be opened 
by chance. For instance, a combination lock whose dial is numbered from 
0 to 39 and which must be turned in three alternating directions will have 
64,000 (= 40 x 40 x 40) possible combinations. This number gives a 
measure of complexity of the combination lock but also corresponds to a 
1/64,000 probability of the lock being opened by chance. A more 
complicated combination lock whose dial is numbered from 0 to 99 and 
which must be turned in five alternating directions will have 
10,000,000,000 (= 100 x 100 x 100 x 100 x 100) possible combinations 
and thus a 1/10,000,000,000 probability of being opened by chance. 
Complexity and probability therefore vary inversely: the greater the 
complexity, the smaller the probability. The “complexity” in “specified 
complexity” refers to this probabilistic construal of complexity. 

Conditionally independent patterns. The patterns that in the 
presence of complexity or improbability implicate a designing intelligence 
must be independent of the event whose design is in question. Crucial here 
is that patterns not be artificially imposed on events after the fact. For 
instance, if an archer shoots arrows at a wall and we then paint targets 
around the arrows so that they stick squarely in the bull’s-eyes, we impose 
a pattern after the fact. Any such pattern is not independent of the arrow’s 
trajectory. On the other hand, if the targets are set up in advance 
(“specified”) and then the archer hits them accurately, we know it was not 
by chance but rather by design. The way to characterize this independence 
of patterns is via the probabilistic notion of conditional independence. A 
pattern is conditionally independent of an event if adding our knowledge 
of the pattern to a chance hypothesis does not alter the event’s probability. 
The “specified” in “specified complexity” refers to such conditionally 
independent patterns. These are the specifications.  

Probabilistic resources. Probabilistic resources refer to the number of 
opportunities for an event to occur or be specified. A seemingly 
improbable event can become quite probable once enough probabilistic 
resources are factored in. Alternatively, it may remain improbable even 
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after all the available probabilistic resources have been factored in. 
Probabilistic resources come in two forms: replicational and 
specificational. Replicational resources refer to the number of 
opportunities for an event to occur. Specificational resources refer to the 
number of opportunities to specify an event.  

To see what’s at stake with these two types of probabilistic resources, 
imagine a large wall with N identically-sized nonoverlapping targets 
painted on it and M arrows in your quiver. Let us say that your probability 
of hitting any one of these targets, taken individually, with a single arrow 
by chance is p. Then the probability of hitting any one of these N targets, 
taken collectively, with a single arrow by chance is bounded by Np, and 
the probability of hitting any of these N targets with at least one of your M 
arrows by chance is bounded by MNp. In this case, the number of 
replicational resources corresponds to M (the number of arrows in your 
quiver), the number of specificational resources corresponds to N (the 
number of targets on the wall), and the total number probabilistic 
resources corresponds to the product MN. For a specified event of 
probability p to be reasonably attributed to chance, the number MNp must 
not be too small.  

Specificational complexity. The conditionally independent patterns 
that are specifications exhibit varying degrees of complexity. Such 
degrees of complexity are relativized to personal and computational 
agents—what I generically refer to as “subjects.” Subjects grade the 
complexity of patterns in light of their cognitive/computational powers 
and background knowledge. The degree of complexity of a specification 
determines the number of specificational resources that must be factored 
in for setting the level of improbability needed to preclude chance. The 
more complex the pattern, the more specificational resources must be 
factored in.  

To see what’s at stake, imagine a dictionary of 100,000 (= 105) basic 
concepts. There are then 105 1-level concepts, 1010 2-level concepts, 1015 
3-level concepts, and so on. If “bidirectional,” “rotary,” “motor-driven,” 
and “propeller” are basic concepts, then the bacterial flagellum can be 
characterized as a 4-level concept of the form “bidirectional rotary motor-
driven propeller.” Now, there are about N = 1020 concepts of level 4 or 
less, which constitute the relevant specificational resources. Given p as the 
probability for the chance formation for the bacterial flagellum, we think 
of N as providing N targets for the chance formation of the bacterial 
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flagellum, where the probability of hitting each target is not more than p. 
Factoring in these N specificational resources then amounts to checking 
whether the probability of hitting any of these targets by chance is small, 
which in turn amounts to showing that the product Np is small (see last 
bullet point on probabilistic resources). 

Universal Probability Bound. In the observable universe, 
probabilistic resources come in limited supplies. Within the known 
physical universe there are estimated around 1080 or so elementary 
particles. Moreover, the properties of matter are such that transitions from 
one physical state to another cannot occur at a rate faster than 1045 times 
per second. This frequency corresponds to the Planck time, which 
constitutes the smallest physically meaningful unit of time. Finally, the 
universe itself is about a billion times younger than 1025 seconds 
(assuming the universe is between ten and twenty billion years old). If we 
now assume that any specification of an event within the known physical 
universe requires at least one elementary particle to specify it and cannot 
be generated any faster than the Planck time, then these cosmological 
constraints imply that the total number of specified events throughout 
cosmic history cannot exceed  

1080 x 1045 x 1025 = 10150. 
As a consequence, any specified event of probability less than 1 in 

10150 will remain improbable even after all conceivable probabilistic 
resources from the observable universe have been factored in. A 
probability of 1 in 10150 is therefore a universal probability bound (for the 
details justifying this universal probability bound, see Dembski 1998b, 
sec. 6.5). A universal probability bound is impervious to all available 
probabilistic resources that may be brought against it. Indeed, all the 
probabilistic resources in the known physical world cannot conspire to 
render remotely probable an event whose probability is less than this 
universal probability bound.  

The universal probability bound of 1 in 10150 is the most conservative 
in the literature. The French mathematician Emile Borel (1962, 28; see 
also Knobloch 1987, 228) proposed 1 in 1050 as a universal probability 
bound below which chance could definitively be precluded (i.e., any 
specified event as improbable as this could never be attributed to chance). 
Cryptographers assess the security of cryptosystems in terms of brute 
force attacks that employ as many probabilistic resources as are available 
in the universe to break a cryptosystem by chance. In its report on the role 
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of cryptography in securing the information society, the National Research 
Council set 1 in 1094 as its universal probability bound to ensure the 
security of cryptosystems against chance-based attacks (see Dam and Lin, 
1996, 380, note 17). Theoretical computer scientist Seth Lloyd (2002) sets 
10120 as the maximum number of bit-operations that the universe could 
have performed throughout its entire history. That number corresponds to 
a universal probability bound of 1 in 10120. Stuart Kauffman (2000) in his 
most recent book, Investigations, comes up with similar numbers. 

For something to exhibit specified complexity therefore means that it 
matches a conditionally independent pattern (i.e., specification) that 
corresponds to an event of probability less than the universal probability 
bound. Specified complexity is a widely used criterion for detecting 
design. For instance, when researchers in the Search for Extraterrestrial 
Intelligence (SETI) look for signs of intelligence from outer space, they 
are looking for specified complexity (recall the movie Contact in which 
contact is established when a long sequence of prime numbers comes in 
from outer space—such a sequence exhibits specified complexity). Let us 
therefore examine next the reliability of specified complexity as a criterion 
for detecting design.  

 
 

4. Reliability of the Criterion 
Specified complexity functions as a criterion for detecting design—I 

call it the complexity-specification criterion. In general, criteria attempt to 
classify individuals with respect to a target group. The target group for the 
complexity-specification criterion comprises all things intelligently 
caused. How accurate is this criterion at correctly assigning things to this 
target group and correctly omitting things from it?  

The things we are trying to explain have causal histories. In some of 
those histories intelligent causation is indispensable whereas in others it is 
dispensable. An inkblot can be explained without appealing to intelligent 
causation; ink arranged to form meaningful text cannot. When the 
complexity-specification criterion assigns something to the target group, 
can we be confident that it actually is intelligently caused? If not, we have 
a problem with false positives. On the other hand, when this criterion fails 
to assign something to the target group, can we be confident that no 
intelligent cause underlies it? If not, we have a problem with false 
negatives.  
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Consider first the problem of false negatives. When the complexity-
specification criterion fails to detect design in a thing, can we be sure that 
no intelligent cause underlies it? No, we cannot. To determine that 
something is not designed, this criterion is not reliable. False negatives are 
a problem for it. This problem of false negatives, however, is endemic to 
design detection in general. One difficulty is that intelligent causes can 
mimic undirected natural causes, thereby rendering their actions 
indistinguishable from such unintelligent causes. A bottle of ink happens 
to fall off a cupboard and spill onto a sheet of paper. Alternatively, a 
human agent deliberately takes a bottle of ink and pours it over a sheet of 
paper. The resulting inkblot may look identical in both instances, but in 
the one case results by natural causes, in the other by design.  

Another difficulty is that detecting intelligent causes requires 
background knowledge on our part. It takes an intelligent cause to 
recognize an intelligent cause. But if we do not know enough, we will 
miss it. Consider a spy listening in on a communication channel whose 
messages are encrypted. Unless the spy knows how to break the 
cryptosystem used by the parties on whom she is eavesdropping (i.e., 
knows the cryptographic key), any messages traversing the 
communication channel will be unintelligible and might in fact be 
meaningless. 

The problem of false negatives therefore arises either when an 
intelligent agent has acted (whether consciously or unconsciously) to 
conceal one’s actions, or when an intelligent agent, in trying to detect 
design, has insufficient background knowledge to determine whether 
design actually is present. This is why false negatives do not invalidate the 
complexity-specification criterion. This criterion is fully capable of 
detecting intelligent causes intent on making their presence evident. 
Masters of stealth intent on concealing their actions may successfully 
evade the criterion. But masters of self-promotion bank on the complexity-
specification criterion to make sure their intellectual property gets 
properly attributed. Indeed, intellectual property law would be impossible 
without this criterion. 

And that brings us to the problem of false positives. Even though 
specified complexity is not a reliable criterion for eliminating design, it is 
a reliable criterion for detecting design. The complexity-specification 
criterion is a net. Things that are designed will occasionally slip past the 
net. We would prefer that the net catch more than it does, omitting nothing 
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due to design. But given the ability of design to mimic unintelligent 
causes and the possibility of ignorance causing us to pass over things that 
are designed, this problem cannot be remedied. Nevertheless, we want to 
be very sure that whatever the net does catch includes only what we intend 
it to catch—namely, things that are designed. Only things that are 
designed had better end up in the net. If that is the case, we can have 
confidence that whatever the complexity-specification criterion attributes 
to design is indeed designed. On the other hand, if things end up in the net 
that are not designed, the criterion is in trouble. 

How can we see that specified complexity is a reliable criterion for 
detecting design? Alternatively, how can we see that the complexity-
specification criterion successfully avoids false positives—that whenever 
it attributes design, it does so correctly? The justification for this claim is 
a straightforward inductive generalization: In every instance where 
specified complexity obtains and where the underlying causal story is 
known (i.e., where we are not just dealing with circumstantial evidence, 
but where, as it were, the video camera is running and any putative 
designer would be caught red-handed), it turns out design actually is 
present; therefore, design actually is present whenever the complexity-
specification criterion attributes design.  

Although this justification for the complexity-specification criterion’s 
reliability at detecting design may seem a bit too easy, it really isn’t. If 
something genuinely instantiates specified complexity, then it is 
inexplicable in terms of all material mechanism (not only those that are 
known but all of them). Indeed, to attribute specified complexity to 
something is to say that the specification to which it conforms corresponds 
to an event that is highly improbable with respect to all material 
mechanism that might give rise to the event. So take your pick—treat the 
item in question as inexplicable in terms of all material mechanisms or 
treat it as designed. But since design is uniformly associated with 
specified complexity when the underlying causal story is known, 
induction counsels attributing design in cases where the underlying causal 
story is not known. 

To sum up, for specified complexity to eliminate chance and detect 
design, it is not enough that the probability be small with respect to some 
arbitrarily chosen probability distribution. Rather, it must be small with 
respect to every probability distribution that might characterize the chance 
occurrence of the thing in question. If that is the case, then a design 
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inference follows. The use of chance here is very broad and includes 
anything that can be captured mathematically by a stochastic process. It 
thus includes deterministic processes whose probabilities all collapse to 
zero and one (cf. necessities, regularities, and natural laws). It also 
includes nondeterministic processes, like evolutionary processes that 
combine random variation and natural selection. Indeed, chance so 
construed characterizes all material mechanisms. 

 
 

5. Assertibility 
The reliability of specified complexity as a criterion for detecting 

design is not a problem. Neither is there a problem with specified 
complexity’s coherence as a meaningful concept—specified complexity is 
well-defined. If there’s a problem, it centers on specified complexity’s 
assertibility. Assertibility is a term of philosophical use that refers to the 
epistemic justification or warrant for a claim. Assertibility (with an “i”) is 
distinguished from assertability (with an “a”), where the latter refers to the 
local factors that in the pragmatics of discourse determine whether 
asserting a claim is justified (see Jackson 1987, 11). For instance, as a 
tourist in Iraq I might be epistemically justified asserting that Saddam 
Hussein is a monster (in which case the claim would be assertible). Local-
pragmatic considerations, however, tell against asserting this remark 
within Iraqi borders (the claim there would be unassertable). Unlike 
assertibility, assertability can depend on anything from etiquette and good 
manners to who happens to hold political power. Assertibility with an “i” 
is what interests us here.  

To see what’s at stake with specified complexity’s assertibility, 
consider first a mathematical example. It’s an open question in 
mathematics whether the number pi (the ratio of the circumference of a 
circle to its diameter) is regular, where by regular I mean that every 
number between 0 and 9 appears in the decimal expansion of pi with 
limiting relative frequency 1/10. Regularity is a well-defined mathematical 
concept. Thus, in asserting that pi is regular, we might be making a true 
statement. But without a mathematical proof of pi’s regularity, we have no 
justification for asserting that pi is regular. The regularity of pi is, at least 
for now, unassertible (despite over 200 billion decimal digits of pi having 
been computed).  
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But what about the specified complexity of various biological 
systems? Are there any biological systems whose specified complexity is 
assertible? Critics of intelligent design argue that no attribution of 
specified complexity to any natural system can ever be assertible. The 
argument runs as follows. It starts by noting that if some natural system 
instantiates specified complexity, then that system must be vastly 
improbable with respect to all purely natural mechanisms that could be 
operating to produce it. But that means calculating a probability for each 
such mechanism. This, so the argument runs, is an impossible task. At best 
science could show that a given natural system is vastly improbable with 
respect to known mechanisms operating in known ways and for which the 
probability can be estimated. But that omits (1) known mechanisms 
operating in known ways for which the probability cannot be estimated, 
(2) known mechanisms operating in unknown ways, and (3) unknown 
mechanisms. 

Thus, even if it is true that some natural system instantiates specified 
complexity, we could never legitimately assert its specified complexity, 
much less know it. Accordingly, to assert the specified complexity of any 
natural system constitutes an argument from ignorance. This line of 
reasoning against specified complexity is much like the standard agnostic 
line against theism—we can’t prove atheism (cf. the total absence of 
specified complexity from nature), but we can show that theism (cf. the 
specified complexity of certain natural systems) cannot be justified and is 
therefore unassertible. This is how skeptics argue that there is no (and 
indeed can be no) evidence for God or design. 

A little reflection, however, makes clear that this attempt by skeptics 
to undo specified complexity cannot be justified on the basis of scientific 
practice. Indeed, the skeptic imposes requirements so stringent that they 
are absent from every other aspect of science. If standards of scientific 
justification are set too high, no interesting scientific work will ever get 
done. Science therefore balances its standards of justification with the 
requirement for self-correction in light of further evidence. The possibility 
of self-correction in light of further evidence is absent in mathematics and 
accounts for mathematics’ need for the highest level of justification, 
namely, strict logico-deductive proof. But science does not work that way.  

Science must work with available evidence, and on that basis (and that 
basis alone) formulate the best explanation of the phenomenon in 
question. This means that science cannot explain a phenomenon by 
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appealing to the promise, prospect, or possibility of future evidence. In 
particular, unknown mechanisms or undiscovered ways by which those 
mechanisms operate cannot be invoked to explain a phenomenon. If 
known material mechanisms can be shown incapable of explaining a 
phenomenon, then it is an open question whether any mechanisms 
whatsoever are capable of explaining it. If, further, there are good reasons 
for asserting the specified complexity of certain biological systems, then 
design itself becomes assertible in biology. Let’s now see how this could 
be. 

 
 

6. Application to Evolutionary Biology 
Evolutionary biology teaches that all biological complexity is the 

result of material mechanisms. These include principally the Darwinian 
mechanism of natural selection and random variation but also include 
other mechanisms (symbiogenesis, gene transfer, genetic drift, the action 
of regulatory genes in development, self-organizational processes, etc.). 
These mechanisms are just that: mindless material mechanisms that do 
what they do irrespective of intelligence. To be sure, mechanisms can be 
programmed by an intelligence. But any such intelligent programming of 
evolutionary mechanisms is not properly part of evolutionary biology. 

Intelligent design, by contrast, teaches that biological complexity is 
not exclusively the result of material mechanisms but also requires 
intelligence, where the intelligence in question is not reducible to such 
mechanisms. The central issue, therefore, is not the relatedness of all 
organisms, or what typically is called common descent. Indeed, intelligent 
design is perfectly compatible with common descent. Rather, the central 
issue is how biological complexity emerged and whether intelligence 
played an indispensable (which is not to say exclusive) role in its 
emergence. 

Suppose, therefore, for the sake of argument that intelligence—one 
irreducible to material mechanisms—actually did play a decisive role in 
the emergence of life’s complexity and diversity. How could we know it? 
Certainly specified complexity will be required. Indeed, if specified 
complexity is absent or dubious, then the door is wide open for material 
mechanisms to explain the object of investigation. Only as specified 
complexity becomes assertible does the door to material mechanisms start 
to close. 
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Nevertheless, evolutionary biology teaches that within biology the 
door can never be closed all the way and indeed should not be closed at 
all. In fact, evolutionary biologists claim to have demonstrated that design 
is superfluous for understanding biological complexity. The only way 
actually to demonstrate this, however, is to exhibit material mechanisms 
that account for the various forms of biological complexity out there. 
Now, if for every instance of biological complexity some mechanism 
could readily be produced that accounts for it, intelligent design would 
drop out of scientific discussion. Occam’s razor, by proscribing 
superfluous causes, would in this instance finish off intelligent design 
quite nicely. 

But that hasn’t happened. Why not? The reason is that there are plenty 
of complex biological systems for which no biologist has a clue how they 
emerged. I’m not talking about handwaving just-so stories. Biologists 
have plenty of those. I’m talking about detailed testable accounts of how 
such systems could have emerged. To see what’s at stake, consider how 
biologists propose to explain the emergence of the bacterial flagellum, a 
molecular machine that has become the mascot of the intelligent design 
movement.  

In public lectures Harvard biologist Howard Berg calls the bacterial 
flagellum “the most efficient machine in the universe.” The flagellum is a 
nano-engineered motor-driven propeller on the backs of certain bacteria. It 
spins at tens of thousands of rpm, can change direction in a quarter turn, 
and propels a bacterium through its watery environment. According to 
evolutionary biology it had to emerge via some material mechanism(s). 
Fine, but how?  

The usual story is that the flagellum is composed of parts that 
previously were targeted for different uses and that natural selection then 
co-opted to form a flagellum. This seems reasonable until we try to fill in 
the details. The only well-documented examples that we have of 
successful co-optation come from human engineering. For instance, an 
electrical engineer might co-opt components from a microwave oven, a 
radio, and a computer screen to form a working television. But in that 
case, we have an intelligent agent who knows all about electrical gadgets 
and about televisions in particular.  

But natural selection doesn’t know a thing about bacterial flagella. So 
how is natural selection going to take extant protein parts and co-opt them 
to form a flagellum? The problem is that natural selection can only select 
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for pre-existing function. It can, for instance, select for larger finch beaks 
when the available nuts are harder to open. Here the finch beak is already 
in place and natural selection merely enhances its present functionality. 
Natural selection might even adapt a pre-existing structure to a new 
function; for example, it might start with finch beaks adapted to opening 
nuts and end with beaks adapted to eating insects. 

But for co-optation to result in a structure like the bacterial flagellum, 
we are not talking about enhancing the function of an existing structure or 
reassigning an existing structure to a different function, but reassigning 
multiple structures previously targeted for different functions to a novel 
structure exhibiting a novel function. Even the simplest bacterial flagellum 
requires around forty proteins for its assembly and structure. All these 
proteins are necessary in the sense that lacking any of them, a working 
flagellum does not result.  

The only way for natural selection to form such a structure by co-
optation, then, is for natural selection gradually to enfold existing protein 
parts into evolving structures whose functions co-evolve with the 
structures. We might, for instance, imagine a five-part mousetrap 
consisting of a platform, spring, hammer, holding bar, and catch evolving 
as follows: It starts as a doorstop (thus consisting merely of the platform), 
then evolves into a tie-clip (by attaching the spring and hammer to the 
platform), and finally becomes a full mousetrap (by also including the 
holding bar and catch).  

Design critic Kenneth Miller finds such scenarios not only completely 
plausible but also deeply relevant to biology (in fact, he regularly sports a 
modified mousetrap cum tie-clip). Intelligent design proponents, by 
contrast, regard such scenarios as rubbish. Here’s why. First, in such 
scenarios the hand of human design and intention meddles everywhere. 
Evolutionary biologists assure us that eventually they will discover just 
how the evolutionary process can take the right and needed steps without 
the meddling hand of design. All such assurances, however, presuppose 
that intelligence is dispensable in explaining biological complexity. Yet 
the only evidence we have of successful co-optation comes from 
engineering and confirms that intelligence is indispensable in explaining 
complex structures like the mousetrap and by implication the flagellum. 
Intelligence is known to have the causal power to produce such structures. 
We’re still waiting for the promised material mechanisms. 

The other reason design theorists are less than impressed with co-
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optation concerns an inherent limitation of the Darwinian mechanism. The 
whole point of the Darwinian selection mechanism is that one can get 
from anywhere in biological configuration space to anywhere else 
provided one can take small steps. How small? Small enough that they are 
reasonably probable. But what guarantee is there that a sequence of baby-
steps connects any two points in configuration space?  

The problem is not simply one of connectivity. For the Darwinian 
selection mechanism to connect point A to point B in configuration space, 
it is not enough that there merely exist a sequence of baby-steps 
connecting the two. In addition, each baby-step needs in some sense to be 
“successful.” In biological terms, each step requires an increase in fitness 
as measured in terms of survival and reproduction. Natural selection, after 
all, is the motive force behind each baby-step, and selection only selects 
what is advantageous to the organism. Thus, for the Darwinian mechanism 
to connect two organisms, there must be a sequence of successful baby-
steps connecting the two.  

Richard Dawkins (1996) compares the emergence of biological 
complexity to climbing a mountain—Mount Improbable, as he calls it. 
According to him, Mount Improbable always has a gradual serpentine path 
leading to the top that can be traversed in baby-steps. But that’s hardly an 
empirical claim. Indeed, the claim is entirely gratuitous. It might be a fact 
about nature that Mount Improbable is sheer on all sides and getting to the 
top from the bottom via baby-steps is effectively impossible. A gap like 
that would reside in nature herself and not in our knowledge of nature (it 
would not, in other words, constitute a god-of-the-gaps). 

Consequently, it is not enough merely to presuppose that a fitness-
increasing sequence of baby steps connects two biological systems—it 
must be demonstrated. For instance, it is not enough to point out that some 
genes for the bacterial flagellum are the same as those for a type III 
secretory system (a type of pump) and then handwave that one was co-
opted from the other. Anybody can arrange complex systems in series 
based on some criterion of similarity. But such series do nothing to 
establish whether the end evolved in Darwinian fashion from the 
beginning unless the probability of each step in the series can be 
quantified, the probability at each step turns out to be reasonably large, 
and each step constitutes an advantage to the evolving system. 

Convinced that the Darwinian mechanism must be capable of doing 
such evolutionary design work, evolutionary biologists rarely ask whether 
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such a sequence of successful baby-steps even exists; much less do they 
attempt to quantify the probabilities involved. I attempt that in my book 
No Free Lunch (2002, ch. 5). There I lay out techniques for assessing the 
probabilistic hurdles that the Darwinian mechanism faces in trying to 
account for complex biological structures like the bacterial flagellum. The 
probabilities I calculate—and I try to be conservative—are horrendous 
and render natural selection utterly implausible as a mechanism for 
generating the flagellum and structures like it.  

Is the claim that the bacterial flagellum exhibits specified complexity 
assertible? You bet! Science works on the basis of available evidence, not 
on the promise or possibility of future evidence. Our best evidence points 
to the specified complexity (and therefore design) of the bacterial 
flagellum. It is therefore incumbent on the scientific community to admit, 
at least provisionally, that the bacterial flagellum could be the product of 
design. Might there be biological examples for which the claim that they 
exhibit specified complexity is even more assertible? Yes there might. 
Unlike truth, assertibility comes in degrees, corresponding to the strength 
of evidence that justifies a claim. Yet even now, to say that the bacterial 
flagellum exhibits specified complexity is eminently assertible.  

Evolutionary biology’s only recourse for avoiding a design conclusion 
in instances like this is to look to unknown mechanisms (or known 
mechanisms operating in unknown ways) to overturn what our best 
evidence to date indicates is both complex and specified. As far as the 
evolutionary biologists are concerned, design theorists have failed to take 
into account indirect Darwinian pathways by which the bacterial flagellum 
might have evolved through a series of intermediate systems that changed 
function and structure over time in ways that we do not yet understand. 
But is it that we do not yet understand the indirect Darwinian evolution of 
the bacterial flagellum or that it never happened that way in the first 
place? At this point there is simply no evidence for such indirect 
Darwinian evolutionary pathways to account for biological systems like 
the bacterial flagellum. 

There is further reason to be skeptical of evolutionary biology’s 
general strategy for defeating intelligent design by looking to unknown 
material mechanisms. In the case of the bacterial flagellum, what keeps 
evolutionary biology afloat is the possibility of indirect Darwinian 
pathways that might account for it. Practically speaking, this means that 
even though no slight modification of a bacterial flagellum can continue to 
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serve as a motility structure, a slight modification might serve some other 
function. But there is now mounting evidence of biological systems for 
which any slight modification does not merely destroy the system’s 
existing function but also destroys the possibility of any function of the 
system whatsoever (see Axe 2000). For such systems, neither direct nor 
indirect Darwinian pathways could account for them. In that case we 
would be dealing with an in-principle argument showing not merely that 
no known material mechanism is capable of accounting for the system but 
also that any unknown material mechanism is incapable of accounting for 
it as well. Specified complexity’s assertibility in such cases would thus be 
even greater than in the case of the bacterial flagellum. 

It is possible to rule out unknown material mechanisms once and for 
all provided one has independent reasons for thinking that explanations 
based on known material mechanisms cannot be overturned by yet-to-be-
identified unknown mechanisms. Such independent reasons typically take 
the form of arguments from contingency that invoke numerous degrees of 
freedom. Thus, to establish that no material mechanism explains a 
phenomenon, we must establish that it is compatible with the known 
material mechanisms involved in its production, but that these 
mechanisms also permit any number of alternatives to it. By being 
compatible with but not required by the known material mechanisms 
involved in its production, a phenomenon becomes irreducible not only to 
the known mechanisms but also to any unknown mechanisms. How so? 
Because known material mechanisms can tell us conclusively that a 
phenomenon is contingent and allows full degrees of freedom. Any 
unknown mechanism would therefore have to respect that contingency and 
allow for the degrees of freedom already discovered. 

Consider, for instance, a configuration space comprising all possible 
character sequences from a fixed alphabet (such spaces model not only 
written texts but also polymers like DNA, RNA, and proteins). 
Configuration spaces like this are perfectly homogeneous, with one 
character string geometrically interchangeable with the next. The 
geometry therefore precludes any underlying mechanisms from 
distinguishing or preferring some character strings over others. Not 
material mechanisms but external semantic information (in the case of 
written texts) or functional information (in the case of biopolymers) is 
needed to generate specified complexity in these instances. To argue that 
this semantic or functional information reduces to material mechanisms is 
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like arguing that Scrabble pieces have inherent in them preferential ways 
they like to be sequenced. They don’t. Michael Polanyi (1967; 1968) made 
such arguments for biological design in the 1960s. Stephen Meyer (2003) 
has updated them for the present. 

 
 

7. Eliminative Induction 
To attribute specified complexity to a biological system is to engage in 

an eliminative induction. Eliminative inductions depend on successfully 
falsifying competing hypotheses (contrast this with Popperian 
falsification, where hypotheses are corroborated to the degree that they 
successfully withstand attempts to falsify them). Now, for many design 
skeptics, eliminative inductions are mere arguments from ignorance, that 
is, arguments for the truth of a proposition because it has not been shown 
to be false. In arguments from ignorance, the lack of evidence for a 
proposition is used to argue for its truth. A stereotypical argument from 
ignorance goes something like “ghosts and goblins exist because you 
haven’t shown me that they don’t exist.”  

But that’s clearly not what eliminative inductions are doing. 
Eliminative inductions argue that competitors to the proposition in 
question are false. Provided the proposition together with its competitors 
form a mutually exclusive and exhaustive class, eliminating all the 
competitors entails that the proposition is true. This the ideal case, in 
which eliminative inductions in fact become deductions. The problem is 
that in practice we don’t have a neat ordering of competitors that can then 
all be knocked down with a few straightforward and judicious blows (like 
pins in a bowling alley). Philosopher of science John Earman (1992, 165) 
puts it this way:  

The eliminative inductivist [seems to be] in a position analogous to 
that of Zeno’s archer whose arrow can never reach the target, for 
faced with an infinite number of hypotheses, he can eliminate one, 
then two, then three, etc., but no matter how long he labors, he will 
never get down to just one. Indeed, it is as if the arrow never gets 
half way, or a quarter way, etc. to the target, since however long 
the eliminativist labors, he will always be faced with an infinite list 
[of remaining hypotheses to eliminate]. 

Earman offers these remarks in a chapter titled “A Plea for Eliminative 
Induction.” He himself thinks there is a legitimate and necessary place for 
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eliminative induction in scientific practice. What, then, does he make of 
this criticism? Here is how he handles it (Earman 1992, 165):  

My response on behalf of the eliminativist has two parts. (1) 
Elimination need not proceed in such a plodding fashion, for the 
alternatives may be so ordered that an infinite number can be 
eliminated in one blow. (2) Even if we never get down to a single 
hypothesis, progress occurs if we succeed in eliminating finite or 
infinite chunks of the possibility space. This presupposes, of 
course, that we have some kind of measure, or at least topology, on 
the space of possibilities.  

To this Earman (1992, 177) adds that eliminative inductions are typically 
local inductions, in which there is no pretense of considering all logically 
possible hypotheses. Rather, there is tacit agreement on the explanatory 
domain of the hypotheses as well as on what auxiliary hypotheses may be 
used in constructing explanations.  

In ending this essay, I want to reflect on Earman’s claim that 
eliminative inductions can be progressive. Too often critics of intelligent 
design charge specified complexity with underwriting a purely negative 
form of argumentation. But that charge is not accurate. The argument for 
the specified complexity of the bacterial flagellum, for instance, makes a 
positive contribution to our understanding of the limitations that natural 
mechanisms face in trying to account for it. Eliminative inductions, like all 
inductions and indeed all scientific claims, are fallible. But they need a 
place in science. To refuse them, as evolutionary biology tacitly does by 
rejecting specified complexity as a criterion for detecting design, does not 
keep science safe from disreputable influences but instead undermines 
scientific inquiry itself.  

The way things stand now, evolutionary biology allows intelligent 
design only to fail but not to succeed. If evolutionary biologists can 
discover or construct detailed, testable, indirect Darwinian pathways that 
account for complex biological systems like the bacterial flagellum, then 
intelligent design will rightly fail. On the other hand, evolutionary biology 
makes it effectively impossible for intelligent design to succeed. 
According to evolutionary biology, intelligent design has only one way to 
succeed, namely, by showing that complex specified biological structures 
could not have evolved via any material mechanism. In other words, so 
long as some unknown material mechanism might have evolved the 
structure in question, intelligent design is proscribed.  

Evolutionary theory is thereby rendered immune to disconfirmation in 
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principle because the universe of unknown material mechanisms can never 
be exhausted. Furthermore, the evolutionist has no burden of evidence. 
Instead, the burden of evidence is shifted entirely to the evolution skeptic. 
And what is required of the skeptic? The skeptic must establish a universal 
negative not by an eliminative induction (such inductions are invariably 
local and constrained) but by an exhaustive search and elimination of all 
conceivable possibilities—however remote, however unfounded, however 
unsupported by evidence. That is not how science is supposed to work.  

Science is supposed to give the full range of possible explanations a 
fair chance to succeed. That’s not to say that anything goes; but it is to say 
that anything might go. In particular, science may not by a priori fiat rule 
out logical possibilities. Evolutionary biology, by limiting itself 
exclusively to material mechanisms, has settled in advance which 
biological explanations are true apart from any consideration of empirical 
evidence. This is arm-chair philosophy. Intelligent design may not be 
correct. But the only way we could discover that is by admitting design as 
a real possibility, not by ruling it out a priori. Darwin (1859, 2) himself 
would have agreed. In the Origin of Species he wrote: “A fair result can be 
obtained only by fully stating and balancing the facts and arguments on 
both sides of each question.”  
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