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Fitness among Competitive Agents: A Brief Note 
By William A. Dembski 

 
 
The upshot of the No Free Lunch theorems is that averaged over all fitness functions, 
evolutionary computation does no better than blind search (see Dembski 2002, ch 4 as well as 
Dembski 2005 for an overview). But this raises a question: How does evolutionary computation 
obtain its power since, clearly, it is capable of doing better than blind search? One approach is to 
limit the fitness functions (see Igel and Toussaint 2001). Another, illustrated in David Fogel’s 
work on automated checker and chess playing (see, for instance, Chellapilla and Fogel 1999 and 
Fogel et al. 2004) and, more recently, given a theoretical underpinning by David Wolpert and 
William Macready (2005), is to limit optimization problems to search spaces consisting of agents 
that play competitively against one another. In this brief note, I focus on the latter attempt to get 
around the force of No Free Lunch.  
 
To represent the problem, consider a large space of agents Ω with N elements. The elements of Ω 
are agents that play a game with a fixed set of possible payoffs: msss <<< L21 . We assume 
that for each i and j in Ω, if ks  is the payoff for i playing a particular game with j, then km ss −  is 
the payoff for j in that same game. Since most games are either win-lose or win-lose-draw, m 
usually equals 2 or 3 so that 1s  equals 0 and 2s  equals 1 or 1s  equals 0, 2s equals ½, and 3s  
equals 1.  
 
To make sense of No Free Lunch in such competitive environments now requires giving 
meaning to fitness in these environments inasmuch as NFL is inherently about averaged fitness. 
Suppose agent i obtains a bigger payoff than agent j when they play each other on a given 
occasion. Should the fitness of i therefore be bigger than j? Clearly not since on repeated play 
between them, j might on average score better than i. Minimally, then, fitness among such agents 
will require probabilities ijkp , where this number denotes the probability that i receives payoff 

ks  in playing j. Note that summing these ijkp  over k equals 1.  
 
If we now define 
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it would appear that this number could define a relative fitness of i in relation to j. Yet, this is not 
quite right. The problem is that in competitive environments, there can be intransitivities, in 
which one agent is pairwise superior to another and this other agent is pairwise superior to still a 
third, but the third is in fact pairwise superior to the first. Consider, for instance, the game Rock-
Paper-Scissors. Each object in this game ties itself, defeats another, and is defeated by still a 
third: rock smashes scissors, scissors cut paper, and paper wraps rock (see 
http://www.worldrps.com).  
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A game matrix for Rock-Paper-Scissors is as follows: 
 

    R P S  
R   ½ 0 1  
P   1 ½ 0  
S   0 1 ½  

 
From the symmetry properties of this matrix, it is evident that just because one item happens to 
be pairwise superior to another does not mean that it is globally superior to the other. But that’s 
precisely the challenge of assigning fitness of competitive agents inasmuch as fitness is a global 
measure of adaptedness to an environment.  
 
To provide such a global measure of adaptedness and thereby to overcome the intransitivities 
inherent in pairwise comparisons, fitness in competitive environments needs therefore to factor 
in average performance of agents as they compete across the board with other agents. The 
simplest way to do this is to define the fitness of agent i as  
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Note that when m equals 2, 1s  equals 0, and 2s  equals 1, we can define ijp  as 2ijp  (i.e., the 
probability of i scoring a 1 against j or, alternatively, the probability of i defeating j), and so  
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That this is the proper way to define fitness in competitive environments is clear from 
considering how tournaments are decided when all the competitive agents are able to play each 
other (typically this is not possible because N, the number of agents in the space Ω, is too large 
for all agents to be paired in match play). Consider, for instance, a chess tournament like the St. 
Petersburg Chess Congress of 1909. The outcome of such a tournament is usually displayed in a 
tournament matrix as follows (taken from http://www.endgame.nl/stpeter.htm): 
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St. Petersburg 1909 
                     1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9  
1   Rubinstein       * 1 1 1 ½ ½ ½ 1 1 1 ½ 1 0 1 ½ 1 1 1 1  14½  875 Rubles  
2   Lasker           0 * ½ 1 ½ 1 1 1 ½ 1 1 1 0 1 1 1 1 1 1  14½  875 Rubles  
3   Spielmann        0 ½ * 1 0 1 1 ½ 1 ½ ½ ½ 1 0 ½ 1 ½ ½ 1  11   475 Rubles  
4   Duras            0 0 0 * 0 1 ½ 0 ½ 1 0 1 1 1 1 1 1 1 1  11   475 Rubles  
5   Bernstein        ½ ½ 1 1 * 0 1 0 1 1 1 1 ½ 0 0 0 ½ ½ 1  10½  190 Rubles  
6   Teichmann        ½ 0 0 0 1 * 0 ½ ½ ½ ½ 1 1 ½ 1 ½ 1 1 ½  10   120 Rubles  
7   Perlis           ½ 0 0 ½ 0 1 * ½ ½ 1 ½ 1 1 ½ 1 ½ 0 0 1   9½   80 Rubles  
8   Cohn             0 0 ½ 1 1 ½ ½ * 0 0 1 ½ ½ 0 ½ ½ ½ 1 1   9    40 Rubles  
9   Schlechter       0 ½ 0 ½ 0 ½ ½ 1 * 1 0 0 1 1 ½ 0 1 ½ 1   9    40 Rubles  
10  Salwe            0 0 ½ 0 0 ½ 0 1 0 * ½ 1 1 1 ½ 0 1 1 1   9    40 Rubles  
11  Tartakower       ½ 0 ½ 1 0 ½ ½ 0 1 ½ * 0 0 0 ½ 1 1 1 ½   8½  
12  Mieses           0 0 ½ 0 0 0 0 ½ 1 0 1 * ½ 1 1 1 0 1 1   8½  
13  Dus Chotimirsky  1 1 0 0 ½ 0 0 ½ 0 0 1 ½ * ½ ½ ½ 1 0 1   8  
14  Forgács          0 0 1 0 1 ½ ½ 1 0 0 1 0 ½ * ½ ½ ½ 0 ½   7½  
15  Burn             ½ 0 ½ 0 1 0 0 ½ ½ ½ ½ 0 ½ ½ * 1 ½ ½ 0   7  
16  Vidmar           0 0 0 0 1 ½ ½ ½ 1 1 0 0 ½ ½ 0 * ½ 1 0   7  
17  Speyer           0 0 ½ 0 ½ 0 1 ½ 0 0 0 1 0 ½ ½ ½ * ½ ½   6  
18  Von Freyman      0 0 ½ 0 ½ 0 1 0 ½ 0 0 0 1 1 ½ 0 ½ * 0   5½  
19  Znosko Borovsky  0 0 0 0 0 ½ 0 0 0 0 ½ 0 0 ½ 1 1 ½ 1 *   5  
 
Emanuel Lasker, who tied with Akiba Rubinstein for first place, was at the time the world 
champion. Moreover, Rubinstein, though he never played Lasker in a title match (back then 
challengers had to raise sufficient funds before they could arrange a title match with the world 
champion), was in the five years preceding World War I regarded as the strongest player in the 
world (in 1912 he won five international tournaments in a row, a feat unparalleled). Yet both 
Rubinstein and Lasker were defeated by Dus Chotmirsky, a chess player who would be lost to 
history except for this feat.  
 
A tournament, then, assigns fitness in terms of best overall performance when pairing up all 
agents in match play, with best overall performance measured as best sum-total of payoffs. Thus, 
for a tournament matrix ][ ijττ =  where i and j range over all the agents/players in Ω and where 
each of the ijτ  is the actual payoff for i from playing j in the tournament, one ranks players so 
that the player i for which the number  
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is greatest is assigned to the first row, the player j for which jτ  is the next largest is assigned to 
the second row and so on (with the order among ties being a matter of indifference). Indeed, this 
is exactly what is done with actual tournaments. It was done at St. Petersburg, as is evident in 
how cash prizes (in terms of Rubles) were allotted.  
 
The tournament matrix ][ ijττ =  is the standard instrument for ranking winners on a given 
competitive occasion. Nonetheless, it leaves something to be desired as a reliable way of 
identifying the “most fit” agent(s)/player(s) in Ω. The problem is that a given player, who is 
otherwise excellent, might have been having a bad day. What’s needed, then, to assess fitness is 
not a single tournament matrix corresponding to a single tournament on a given competitive 
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occasion, but rather an average of such tournament matrices over multiple trials so that lucky 
wins and unlucky breaks get factored out. In other words, the proper way to assess fitness is not 
by looking at a tournament matrix ][ ijττ =  from a single competitive occasion but rather by 
looking at the game matrix ][ ijγγ =  that averages such tournament matrices. Given such a game 
matrix, fitness of a player i is given by  
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This measure of fitness corresponds precisely to how evolutionary computation seeks to find 
optimal competitive agents. Take David Fogel’s work on evolutionary searches for optimal 
neural-net chess playing programs (see Fogel et al. 2004). He starts with some fixed but 
manageable number of randomly chosen chess playing neural nets (call this number K). Next he 
plays them against each other in all possible pairwise combinations. But he doesn’t do it just 
once. He does it several times, thereby making all the neural nets play several tournaments 
among themselves (we assume this number is also fixed; call it L). Those neural nets whose 
average tournament performance falls below the 50th percentile get dropped in the next round of 
tournaments. Those that exceed the 50th percentile not only stay on but also reproduce (as is 
typical with evolutionary computation) so that the total number of neural nets competing in the 
next round of tournaments is again K. These, then, compete in another set of L tournaments, after 
which the cycle repeats with more rounds of tournaments, the number of rounds being 
constrained by computational resources. Wolpert and Macready (2005) generalize this set-up but 
don’t add anything fundamentally new to it. 
 
From this synopsis, it’s evident that if K, the number of neural nets that compete in a given round 
of tournaments, could be enlarged to N and if L could be made arbitrarily large so that 
empirically calculated averages of payoffs converged to expected payoffs, then Fogel’s method 
of finding optimal competitive agents would amount exactly to finding the largest fitness value 

iγ  associated with the game matrix ][ ijγγ = . Only because of computational constraints does he 
limit the number of players and tournaments in a given round. Without such constraints, 
optimization among competitive agents would correspond precisely to a straightforward 
optimization of the fitness function f(i) = iγ , with these values determined directly from the 
game matrix ][ ijγ . Fogel’s approach is essentially to provide local approximations to the game 
matrix and then optimize with respect to those local approximations. 
 
The question now remains whether fitness among competitive agents as determined by the game 
matrix allows for a “free lunch.” It does not. The game matrix itself is determined by 
probabilities ijkp  and payoffs ks  where, recall, ijkp  denotes the probability that i receives payoff 

ks  in playing j. I leave it as an exercise to show that averaged over all possible ijkp  and ks , 
competitive searches based on the game matrix do not outperform blind search (for simplicity 
assume that the ks  are real numbers between 0 and 1). Accordingly, NFL holds even for 
competitive agents.  



 5

 
And this brings us back to our first, and now final, question, namely, how does evolutionary 
computation obtain its power inasmuch as it is capable of doing better than blind search? So long 
as NFL applies, the fundamental intuition underlying evolution, namely, that an evolutionary 
process is able to end up with more than it started with, is hard to sustain. That’s why David 
Fogel as well as David Wolpert look to competitive environments in which NFL supposedly 
breaks down. As Fogel put it to me in correspondence (1 June 2001), “Our experiment was about 
learning what would emerge from the ingredients we put in, trying to put in comparatively little 
knowledge about the game.” The implication here is plain, namely, he views his chess and 
checker programs as outputting more knowledge than he put into them.  
 
The view that evolution is a free lunch has been stated most forcefully by Richard Dawkins 
(1987, 316): “The one thing that makes evolution such a neat theory is that it explains how 
organized complexity can arise out of primeval simplicity.” Getting organized complexity out of 
primeval simplicity is a good trick indeed. But it is a trick that NFL seems to debunk. The 
question therefore remains: Insofar as evolutionary computation does better than blind search, 
what is its source of power? That’s a topic for another paper.  
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