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ABSTRACT: Specification denotes the type of pattern that highly improbable 
events must exhibit before one is entitled to attribute them to intelligence. This 
paper analyzes the concept of specification and shows how it applies to design 
detection (i.e., the detection of intelligence on the basis of circumstantial 
evidence). Always in the background throughout this discussion is the 
fundamental question of Intelligent Design (ID): Can objects, even if nothing is 
known about how they arose, exhibit features that reliably signal the action of an 
intelligent cause? This paper reviews, clarifies, and extends previous work on 
specification in my books The Design Inference and No Free Lunch.  

 
 
1 Specification as a Form of Warrant 
 
In the 1990s, Alvin Plantinga focused much of his work on the concept of warrant. During that 
time, he published three substantial volumes on that topic.1 For Plantinga, warrant is what turns 
true belief into knowledge. To see what is at stake with warrant, consider the following remark 
by Bertrand Russell on the nature of error:  
 

Error is not only the absolute error of believing what is false, but also the quantitative error of believing 
more or less strongly than is warranted by the degree of credibility properly attaching to the proposition 
believed in relation to the believer’s knowledge. A man who is quite convinced that a certain horse will win 
the Derby is in error even if the horse does win.2  

 
It is not enough merely to believe that something is true; there also has to be something backing 
up that belief. Accordingly, belief and persuasion are intimately related concepts: we believe that 
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about which we are persuaded. This fact is reflected in languages for which the same word 
denotes both belief and persuasion. For instance, in ancient Greek, the verb peitho denoted both 
to persuade and to believe.3 
 
Over the last decade, much of my work has focused on design detection, that is, sifting the 
effects of intelligence from material causes. Within the method of design detection that I have 
developed, specification functions like Plantinga’s notion of warrant: just as for Plantinga 
warrant is what must be added to true belief before one is entitled to call it knowledge, so within 
my framework specification is what must be added to highly improbable events before one is 
entitled to attribute them to design. The connection between specification and warrant is more 
than a loose analogy: specification constitutes a probabilistic form of warrant, transforming the 
suspicion of design into a warranted belief in design.  
 
My method of design detection, first laid out in The Design Inference and then extended in No 
Free Lunch,4 provides a systematic procedure for sorting through circumstantial evidence for 
design. This method properly applies to circumstantial evidence, not to smoking-gun evidence. 
Indeed, such methods are redundant in the case of a smoking gun where a designer is caught red-
handed. To see the difference, consider the following two cases:  
 

(1) Your daughter pulls out her markers and a sheet of paper at the kitchen table while 
you are eating breakfast. As you’re eating, you see her use those markers to draw a 
picture. When you’ve finished eating, she hands you the picture and says, “This is for 
you, Daddy.” 

 
(2) You are walking outside and find an unusual chunk of rock. You suspect it might be 

an arrowhead. Is it truly an arrowhead, and thus the result of design, or is it just a 
random chunk of rock, and thus the result of material forces that, for all you can tell, 
were not intelligently guided?  

 
In the first instance, the design and designer couldn’t be clearer. In the second, we are dealing 
with purely circumstantial evidence: we have no direct knowledge of any putative designer and 
no direct knowledge of how such a designer, if actual, fashioned the item in question. All we see 
is the pattern exhibited by the item. Is it the sort of pattern that reliably points us to an intelligent 
source? That is the question my method of design detection asks and that the concept of 
specification answers. 
 
 
2 Fisherian Significance Testing 
 
A variant of specification, sometimes called prespecification, has been known for at least a 
century. In the late 1800s, the philosopher Charles Peirce referred to such specifications as 
predesignations.5 Such specifications are also the essential ingredient in Ronald Fisher’s theory 
of statistical significance testing, which he devised in the first half of the twentieth century. In 
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Fisher’s approach to testing the statistical significance of hypotheses, one is justified in rejecting 
(or eliminating) a chance hypothesis provided that a sample falls within a prespecified rejection 
region (also known as a critical region).6 For example, suppose one’s chance hypothesis is that a 
coin is fair. To test whether the coin is biased in favor of heads, and thus not fair, one can set a 
rejection region of ten heads in a row and then flip the coin ten times. In Fisher’s approach, if the 
coin lands ten heads in a row, then one is justified rejecting the chance hypothesis. 
 
Fisher’s approach to hypothesis testing is the one most widely used in the applied statistics 
literature and the first one taught in introductory statistics courses. Nevertheless, in its original 
formulation, Fisher’s approach is problematic: for a rejection region to warrant rejecting a 
chance hypothesis, the rejection region must have sufficiently small probability. But how small 
is small enough? Given a chance hypothesis and a rejection region, how small does the 
probability of the rejection region have to be so that if a sample falls within it, then the chance 
hypothesis can legitimately be rejected? Fisher never answered this question. The problem here 
is to justify what is called a significance level such that whenever the sample falls within the 
rejection region and the probability of the rejection region given the chance hypothesis is less 
than the significance level, then the chance hypothesis can be legitimately rejected. 
 
More formally, the problem is to justify a significance level α (always a positive real number 
less than one) such that whenever the sample (an event we will call E) falls within the rejection 
region (call it T) and the probability of the rejection region given the chance hypothesis (call it 
H) is less than α (i.e., P(T|H) < α), then the chance hypothesis H can be rejected as the 
explanation of the sample. In the applied statistics literature, it is common to see significance 
levels of .05 and .01. The problem to date has been that any such proposed significance levels 
have seemed arbitrary, lacking “a rational foundation.”7 
 
In The Design Inference, I show that significance levels cannot be set in isolation but must 
always be set in relation to the probabilistic resources relevant to an event’s occurrence.8 In the 
context of Fisherian significance testing, probabilistic resources refer to the number opportunities 
for an event to occur. The more opportunities for an event to occur, the more possibilities for it to 
land in the rejection region and thus the greater the likelihood that the chance hypothesis in 
question will be rejected. It follows that a seemingly improbable event can become quite 
probable once enough probabilistic resources are factored in. Yet if the event is sufficiently 
improbable, it will remain improbable even after all the available probabilistic resources have 
been factored in.  
 
Critics of Fisher’s approach to hypothesis testing are therefore correct in claiming that 
significance levels of .05, .01, and the like that regularly appear in the applied statistics literature 
are arbitrary. A significance level is supposed to provide an upper bound on the probability of a 
rejection region and thereby ensure that the rejection region is sufficiently small to justify the 
elimination of a chance hypothesis (essentially, the idea is to make a target so small that an 
archer is highly unlikely to hit it by chance). Rejection regions eliminate chance hypotheses 
when events that supposedly happened in accord with those hypotheses fall within the rejection 
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regions. The problem with significance levels like .05 and .01 is that typically they are instituted 
without reference to the probabilistic resources relevant to controlling for false positives.9 Once 
those probabilistic resources are factored in, however, setting appropriate significance levels 
becomes straightforward.10  
 
To illustrate the use of probabilistic resources here, imagine the following revision of the 
criminal justice system. From now on, a convicted criminal serves time in prison until he flips k 
heads in a row, where this number is selected according to the severity of the offense (the worse 
the offense, the bigger k). Let’s assume that all coin flips are fair and duly recorded — no 
cheating is possible. Thus, for a 10-year prison sentence, if we assume the prisoner can flip a 
coin once every five seconds (this seems reasonable), the prisoner will perform 12 tosses per 
minute or 720 per hour or 5,760 in an eight-hour work day or 34,560 in a six-day work week or 
1,797,120 in a year or (approximately) 18 million in ten years. Of these, half will, on average, be 
heads. Of these, in turn, half will, on average, be followed by heads. Continuing in this vein we 
find that a sequence of 18 million coin tosses yields 23 heads in a row roughly half the time and 
strictly less than 23 heads in a row the other half (note that 223 is about 9 million, which is about 
half of the total number of coin tosses). Thus, if we required a prisoner to flip 23 heads in a row 
before being released, we would, on average, expect to see him freed within approximately 10 
years. Of course, specific instances will vary: some prisoners will be released after only a short 
stay, whereas others never will record the elusive 23 heads in a row. 
 
Flipping 23 heads in a row is unpleasant but doable. On the other hand, for a prisoner to flip 100 
heads in a row with a fair coin is effectively impossible. The probability of getting 100 heads in a 
row on a given trial is so small that the prisoner has no practical hope of getting out of prison. 
And this remains true even if his life expectancy and coin-tossing ability were substantially 
increased. If he could, for instance, make 1010 (i.e., 10 billion) attempts each year to obtain 100 
heads in a row (this is coin-flipping at a rate of over 500 coin flips per second every hour of 
every day for a full year), then he stands only an even chance of getting out of prison in 1020 
years (i.e., a hundred billion billion years). His probabilistic resources are so inadequate for 
obtaining the desired 100 heads that it is pointless for him to entertain hopes of freedom. 
 
Requiring a prisoner to toss 23 heads in a row before being released from prison corresponds, in 
Fisherian terms, to a significance level of roughly 1 in 9 million (i.e., α = 1/9,000,000). 
Accordingly, before we attribute irregularity to the prisoner’s coin tossing (e.g., by claiming that 
the coin is biased or that there was cheating), we need to see more than 23 heads in a row. How 
many more? That depends on the degree of warrant we require to confidently eliminate chance. 
All chance elimination arguments are fallible in the sense that an event might land in a low 
probability rejection region even if the chance hypothesis holds. But at some point the 
improbability becomes palpable and we look to other hypotheses. With 100 heads in a row, that 
is obviously the case: the probability of getting 100 heads in a row is roughly 1 in 1030, which is 
drastically smaller than 1 in 9 million. Within Fisher’s theory of statistical significance testing, a 
prespecified event of such small probability is enough to disconfirm the chance hypothesis.  



 5

3 Specifications via Probability Densities 
 
In the logic of Fisher’s approach to statistical significance testing, for the chance occurrence of 
an event E to be legitimately rejected because E falls in a rejection region T, T had to be 
identified prior to the occurrence of E. This is to avoid the familiar problem known among 
statisticians as “data snooping” or “cherry picking,” in which a pattern (in this case T) is imposed 
on an event (in this case the sample E) after the fact. Requiring the rejection region to be set prior 
to the occurrence of E safeguards against attributing patterns to E that are factitious and that do 
not properly preclude the occurrence of E by chance. This safeguard, however, is unduly 
restrictive. Indeed, even within Fisher’s approach to eliminating chance hypotheses, this 
safeguard is relaxed. 
 
To see this, consider that a reference class of possibilities Ω, for which patterns and events can 
be defined, usually comes with some additional geometric structure together with a privileged 
(probability) measure that preserves that geometric structure. In case Ω is finite or countably 
infinite, this measure is typically just the counting measure (i.e., it counts the number of elements 
in a given subset of Ω; note that normalizing this measure on finite sets yields a uniform 
probability). In case Ω is uncountable but suitably bounded (i.e., compact), this privileged 
measure is a uniform probability. In case Ω is uncountable and unbounded, this privileged 
measure becomes a uniform probability when restricted to and normalized with respect to the 
suitably bounded subsets of Ω. Let us refer to this privileged measure as U.11 
 
Now the interesting thing about U in reference to Fisher’s approach to eliminating chance 
hypotheses is that it allows probabilities of the form P(.|H) (i.e., those defined explicitly with 
respect to a chance hypothesis H) to be represented as probabilities of the form f.dU (i.e., the 
product of a nonnegative function f, known as a probability density function, and the measure U). 
The “d” in front of U here signifies that to evaluate this probability requires integrating f with 
respect to U.12 The technical details here are not important. What is important is that within 
Fisher’s approach to hypothesis testing the probability density function f is used to identify 
rejection regions that in turn are used to eliminate chance. These rejection regions take the form 
of extremal sets, which we can represent as follows (γ and δ are real numbers): 
 

Tγ  =  {ω∈Ω | f(ω) ≥ γ}, 
 
Tδ  =  {ω∈Ω | f(ω) ≤ δ}. 

 
Tγ consists of all possibilities in the reference class Ω for which the density function f is at least 
γ. Similarly, Tδ consists of all possibilities in the reference class Ω for which the density function 
f is no more than δ. Although this way of characterizing rejections regions may seem abstract, 
what is actually going on here is simple. Any probability density function f is a nonnegative real-
valued function defined on Ω. As such, f induces what might be called a probability landscape 
(think of Ω as a giant plane and f as describing the elevation of a landscape over Ω). Where f is 
high corresponds to where the probability measure f.dU concentrates a lot of probability. Where f 
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is low corresponds to where the probability measure f.dU concentrates little probability. Since f 
cannot fall below zero, we can think of the landscape as never dipping below sea-level. Tδ then 
corresponds to those places in Ω where the probability landscape induced by f is no higher than δ 
whereas Tγ corresponds to those places in Ω where probability landscape is at least as high as γ. 
For a bell-shaped curve, Tγ corresponds to the region under the curve where it approaches a 
maximum, and Tδ corresponds to the tails of the distribution. 
 
Since this way of characterizing rejection regions may still seem overly abstract, let us apply it to 
several examples. Suppose, for instance, that Ω is the real line and that the hypothesis H 
describes a normal distribution with, let us say, mean zero and variance one. In that case, for the 
probability measure f.dU that corresponds to the P(.|H), the density function f has the form 
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This function is everywhere positive and attains its maximum at the mean (i.e., at x = 0, where f 
takes the value 1

2π , or approximately .399). At two standard deviations from the mean (i.e., for 
the absolute value of x at least 2), this function attains but does not exceed .054. Thus for δ = 
.054, Tδ corresponds to two tails of the normal probability distribution: 
 

 

left tail right tail 

Tδ Tδ 

 
 
Moreover, since those tails are at least two standard deviations from the mean, it follows that 
P(Tδ|H) < .05. Thus, for a significance level α = .05 and a sample E that falls within Tδ, Fisher’s 
approach rejects attributing E to the chance hypothesis H. 
 
The important thing to note in this example is not the precise level of significance that was set 
(here α = .05) or the precise form of the probability distribution under consideration (here a 
normal distribution with mean zero and variance one). These were simply given for 
concreteness. Rather, the important thing here is that the temporal ordering of rejection region 
and sample, where a rejection region (here Tδ) is first specified and a sample (here E) is then 
taken, simply was not an issue. For a statistician to eliminate the chance hypothesis H as an 
explanation of E, it is not necessary for the statistician first to identify Tδ explicitly, then perform 



 7

an experiment to elicit E, and finally determine whether E falls within Tδ. H, by inducing a 
probability density function f, automatically also inducing the extremal set Tδ, which, given the 
significance level α = .05, is adequate for eliminating H once a sample E falls within Tδ. If you 
will, the rejection region Tδ comes automatically with the chance hypothesis H, making it 
unnecessary to identify it explicitly prior to the sample E. Eliminating chance when samples fall 
in such extremal sets is standard statistical practice. Thus, in the case at hand, if a sample falls 
sufficiently far out in the tails of a normal distribution, the distribution is rejected as inadequate 
to account for the sample. 
 
In this last example we considered extremal sets of the form Tδ at which the probability density 
function concentrates minimal probability. Nonetheless, extremal sets of the form Tγ at which the 
probability density function concentrates maximal probability can also serve as rejection regions 
within Fisher’s approach, and this holds even if such regions are not explicitly identified prior to 
an experiment. Consider, for instance, the following example. Imagine that a die is to be thrown 
6,000,000 times. Within Fisher’s approach, the “null” hypothesis (i.e., the chance hypothesis 
most naturally associated with this probabilistic set-up) is a chance hypothesis H according to 
which the die is fair (i.e., each face has probability 1/6) and the die rolls are stochastically 
independent (i.e., one roll does not affect the others). Consider now the reference class of 
possibilities Ω consisting of all 6-tuples of nonnegative integers that sum to 6,000,000. The 6-
tuple (6,000,000, 0, 0, 0, 0, 0) would, for instance, correspond to tossing the die 6,000,000 times 
with the die each time landing “1.” The 6-tuple (1,000,000, 1,000,000, 1,000,000, 1,000,000, 
1,000,000, 1,000,000), on the other hand, would correspond to tossing the die 6,000,000 times 
with each face landing exactly as often as the others. Both these 6-tuples represent possible 
outcomes for tossing the die 6,000,000 times, and both belong to Ω. 
 
Suppose now that the die is thrown 6,000,000 times and that each face appears exactly 1,000,000 
times (as in the previous 6-tuple). Even if the die is fair, there is something anomalous about 
getting exactly one million appearances of each face of the die. What’s more, Fisher’s approach 
is able to make sense of this anomaly. The probability distribution that H induces on Ω is known 
as the multinomial distribution,13 and for each 6-tuple (x1, x 2, x 3, x 4, x 5, x 6) in Ω, it assigns a 
probability of 
 

000,000,6

654321
654321 )6/1(

!!!!!!
!000,000,6),,,,,(

xxxxxx
xxxxxxf

⋅⋅⋅⋅⋅
=  

 
Although the combinatorics involved with the multinomial distribution are complicated (hence 
the common practice of approximating it with continuous probability distributions like the chi-
square distribution), the reference class of possibilities Ω, though large, is finite, and the 
cardinality of Ω (i.e., the number of elements in Ω), denoted by |Ω|, is well-defined (its order of 
magnitude is around 1033). 
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The function f defines not only a probability for individual elements (x1, x 2, x 3, x 4, x 5, x 6) of Ω 
but also a probability density with respect to the counting measure U (i.e., P(.|H) = f.dU), and 
attains its maximum at the 6-tuple for which each face of the die appears exactly 1,000,000 
times. Let us now take γ to be the value of f(x1, x 2, x 3, x 4, x 5, x 6) at x 1 = x 2 = x 3 = x 4 = x 5 = x 6 = 
1,000,000 (γ is approximately 2.475 x 10–17).  Then Tγ defines a rejection region corresponding to 
those elements of Ω where f attains at least the value γ. Since γ is the maximum value that f 
attains and since there is only one 6-tuple where this value is attained (i.e., at x 1 = x 2 = x 3 = x 4 = 
x 5 = x 6 = 1,000,000), it follows that Tγ contains only one member of Ω and that the probability of 
Tγ is P(Tγ|H) = f(1,000,000, 1,000,000, 1,000,000, 1,000,000, 1,000,000, 1,000,000), which is 
approximately 2.475 x 10–17. This rejection region is therefore highly improbable, and its 
improbability will in most practical applications be far more extreme than any significance level 
we happen to set. Thus, if we observed exactly 1,000,000 appearances of each face of the die, we 
would, according to Fisher’s approach, conclude that the die was not thrown by chance. Unlike 
the previous example, in which by falling in the tails of the normal distribution a sample deviated 
from expectation by too much, the problem here is that the sample matches expectation too 
closely. This is a general feature of Fisherian significance testing: samples that fall in rejection 
regions of the form Tδ deviate from expectation too much whereas samples that fall in rejection 
regions of the form Tγ match expectation too closely. 
 
The problem of matching expectation too closely is as easily handled within Fisher’s approach as 
the problem of deviating from expectation too much. Fisher himself recognized as much and saw 
rejection regions of the form Tγ as useful for uncovering data falsification. For instance, Fisher 
uncovered a classic case of data falsification in analyzing Gregor Mendel’s data on peas. Fisher 
inferred that “Mendel’s data were massaged,” as one statistics text puts it, because Mendel’s data 
matched his theory too closely.14 The match that elicited this charge of data falsification was a 
specified event whose probability was no more extreme than 1 in a 100,000 (a probability that is 
huge compared to the 1 in 1017 probability computed in the preceding example). Fisher 
concluded by charging Mendel’s gardening assistant with deception. 
 
To sum up, given the chance hypothesis H, the extremal sets Tγ and Tδ were defined with respect 
to the probability density function f where P(.|H) = f.dU. Moreover, given a significance level α 
and a sample E that falls within either of these extremal sets, Fisher’s approach eliminates H 
provided that the extremal sets have probability less than α. An obvious question now arises: In 
using either of the extremal sets Tγ or Tδ to eliminate the chance hypothesis H, what is so special 
about basing these extremal sets on the probability density function f associated with the 
probability measure P(.|H) (= f.dU)? Why not let f be an arbitrary real-valued function? 
 
Clearly, some restrictions must apply to f. If f can be arbitrary, then for any subset A of the 
reference class Ω, we can define f to be the indicator function 1A (by definition this function 
equals 1 whenever an element of Ω is in A and 0 otherwise).15 For such an f, if γ = 1, then Tγ = 
{ω∈Ω | f(ω) ≥ γ} = A, and thus any subset of Ω becomes an extremal set for some function f. But 
this would allow Fisher’s approach to eliminate any chance hypothesis whatsoever: For any 
sample E (of sufficiently small probability), find a subset A of Ω that includes E and such that 
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P(A|H) is less than whatever significance level α was decided. Then for f = 1A and γ = 1, Tγ = A. 
Consequently, if Fisher’s approach extends to arbitrary f, H would always have to be rejected. 
But by thus eliminating all chance hypotheses, Fisher’s approach becomes useless. 
 
What restrictions on f will therefore safeguard it from frivolously disqualifying chance 
hypotheses? Recall that initially it was enough for rejection regions to be given in advance of an 
experiment. Then we noted that the rejection regions corresponding to extremal sets associated 
with the probability density function associated with the chance hypothesis in question also 
worked (regardless of when they were identified — in particular, they did not have to be 
identified in advance of an experiment). Finally, we saw that placing no restrictions on the 
function f eliminated chance willy-nilly and thus could not legitimately be used to eliminate 
chance. But why was the complete lack of restrictions inadequate for eliminating chance? The 
problem — and this is why statisticians are so obsessive about making sure hypotheses are 
formulated in advance of experiments — is that with no restriction on the function f, f can be 
tailored to the sample E and thus perforce eliminate H even if H obtains. What needs to be 
precluded, then, is the tailoring of f to E. Alternatively, f needs to be independent (in some 
appropriate sense) of the sample E. 
 
Let us now return to the question left hanging earlier: In eliminating H, what is so special about 
basing the extremal sets Tγ and Tδ on the probability density function f associated with the 
chance hypothesis H (that is, H induces the probability measure P(.|H) that can be represented as 
f.dU)? Answer: There is nothing special about f being the probability density function associated 
with H; instead, what is important is that f be capable of being defined independently of E, the 
event or sample that is observed. And indeed, Fisher’s approach to eliminating chance 
hypotheses has already been extended in this way, though the extension, thus far, has mainly 
been tacit rather than explicit. 
 
 
4 Specifications via Compressibility 
 
As an example of extremal sets that, though not induced by probability density functions, 
nonetheless convincingly eliminate chance within Fisher’s approach to hypothesis testing, let us 
turn to the work of Gregory Chaitin, Andrei Kolmogorov, and Ray Solomonoff. In the 1960s, 
Chaitin, Kolmogorov, and Solomonoff investigated what makes a sequence of coin flips 
random.16 Also known as algorithmic information theory, the Chaitin-Kolmogorov-Solomonoff 
theory began by noting that conventional probability theory is incapable of distinguishing bit 
strings of identical length (if we think of bit strings as sequences of coin tosses, then any 
sequence of n flips has probability 1 in 2n). 
 
Consider a concrete case. If we flip a fair coin and note the occurrences of heads and tails in 
order, denoting heads by 1 and tails by 0, then a sequence of 100 coin flips looks as follows: 
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(R) 11000011010110001101111111010001100011011001110111 
 00011001000010111101110110011111010010100101011110.  
 
This is in fact a sequence I obtained by flipping a coin 100 times. The problem algorithmic 
information theory seeks to resolve is this: Given probability theory and its usual way of 
calculating probabilities for coin tosses, how is it possible to distinguish these sequences in terms 
of their degree of randomness? Probability theory alone is not enough. For instance, instead of 
flipping (R) I might just as well have flipped the following sequence:  
 
(N) 11111111111111111111111111111111111111111111111111 
 11111111111111111111111111111111111111111111111111.  
 
Sequences (R) and (N) have been labeled suggestively, R for “random,” N for “nonrandom.” 
Chaitin, Kolmogorov, and Solomonoff wanted to say that (R) was “more random” than (N). But 
given the usual way of computing probabilities, all one could say was that each of these 
sequences had the same small probability of occurring, namely, 1 in 2100, or approximately 1 in 
1030. Indeed, every sequence of 100 coin tosses has exactly this same small probability of 
occurring.  
 
To get around this difficulty Chaitin, Kolmogorov, and Solomonoff supplemented conventional 
probability theory with some ideas from recursion theory, a subfield of mathematical logic that 
provides the theoretical underpinnings for computer science and generally is considered quite far 
removed from probability theory.17 What they said was that a string of 0s and 1s becomes 
increasingly random as the shortest computer program that generates the string increases in 
length. For the moment, we can think of a computer program as a short-hand description of a 
sequence of coin tosses. Thus, the sequence (N) is not very random because it has a very short 
description, namely,  
 
 repeat ‘1’ a hundred times. 
 
Note that we are interested in the shortest descriptions since any sequence can always be 
described in terms of itself. Thus (N) has the longer description  
 
 copy ‘11111111111111111111111111111111111111111111111111 
   11111111111111111111111111111111111111111111111111’. 
 
But this description holds no interest since there is one so much shorter. The sequence 
 
(H) 11111111111111111111111111111111111111111111111111 
 00000000000000000000000000000000000000000000000000  
 
is slightly more random than (N) since it requires a longer description, for example,  
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 repeat ‘1’ fifty times, then repeat ‘0’ fifty times.  
 
So too the sequence 
 
(A) 10101010101010101010101010101010101010101010101010 
 10101010101010101010101010101010101010101010101010  
 
has a short description,  
 
 repeat ‘10’ fifty times.  
 
The sequence (R), on the other hand, has no short and neat description (at least none that has yet 
been discovered). For this reason, algorithmic information theory assigns it a higher degree of 
randomness than the sequences (N), (H), and (A).  
 
Since one can always describe a sequence in terms of itself, (R) has the description  
 
 copy ‘11000011010110001101111111010001100011011001110111 
   00011001000010111101110110011111010010100101011110’. 
 
Because (R) was constructed by flipping a coin, it is very likely that this is the shortest 
description of (R). It is a combinatorial fact that the vast majority of sequences of 0s and 1s have 
as their shortest description just the sequence itself. In other words, most sequences are random 
in the sense of being algorithmically incompressible. It follows that the collection of nonrandom 
sequences has small probability among the totality of sequences so that observing a nonrandom 
sequence is reason to look for explanations other than chance.18 
 
Let us now reconceptualize this algorithmic approach to randomness within Fisher’s approach to 
chance elimination. For definiteness, let us assume we have a computer with separate input and 
output memory-registers each consisting of N bits of information (N being large, let us say at 
least a billion bits). Each bit in the output memory is initially set to zero. Each initial sequence of 
bits in the input memory is broken into bytes, interpreted as ASCII characters, and treated as a 
Fortran program that records its results in the output memory. Next we define the length of a bit 
sequence u in input memory as N minus the number of uninterrupted 0s at the end of u. Thus, if u 
consists entirely of 0s, it has length 0. On the other hand, if u has a 1 in its very last memory 
location, u has length N.  
 
Given this computational set-up, there exists a function ϕ that for each input sequence u treats it 
as a Fortran program, executes the program, and then, if the program halts (i.e., does not loop 
endlessly or freeze), delivers an output sequence v in the output memory-register. ϕ is therefore a 
partial function (i.e., it is not defined for all sequences of N bits but only for those that can be 
interpreted as well-defined Fortran programs and that halt when executed). Given ϕ, we now 
define the following function f on the output memory-register: f(v) for v, an output sequence, is 
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defined as the length of the shortest program u (i.e., input sequence) such that ϕ(u) = v (recall 
that the length of u is N minus the number of uninterrupted 0s at the end of u); if no such u exists 
(i.e., if there is no u that ϕ maps onto v), then we define f(v) = N. The function f is integer-valued 
and ranges between 0 and N. Moreover, given a real number δ, it induces the following extremal 
set (the reference class Ω here comprises all possible sequences of N bits in the output memory-
register): 
 

Tδ  =  {v∈Ω | f(v) ≤ δ}. 
 
As a matter of simple combinatorics, it now follows that if we take δ to be an integer between 0 
and N, the cardinality of Tδ (i.e., the number of elements in Tδ) is no greater than 2δ+1. If we 
denote the cardinality of Tδ by |Tδ|, this means that |Tδ| ≤ 2δ+1. The argument demonstrating this 
claim is straightforward: The function ϕ that maps input sequences to output sequences 
associates at most one output sequence to any given input sequence (which is not to say that the 
same output sequence may not be mapped onto by many input sequences). Since for any integer 
δ between 0 and N, there are at most 1 input sequence of length 0, 2 input sequences of length 1, 
4 input sequences of length 2, ..., and 2δ input sequences of length δ, it follows that |Tδ| ≤ 1 + 2 + 
4 + … + 2δ = 2δ+1 – 1 < 2δ+1.  
 
Suppose now that H is a chance hypothesis characterizing the tossing of a fair coin. Any output 
sequence v in the reference class Ω will therefore have probability 2–N. Moreover, since the 
extremal set Tδ contains at most 2δ+1 elements of Ω, it follows that the probability of the extremal 
set Tδ conditional on H will be bounded as follows: 
 

P(Tδ|H)  ≤  2δ+1/2N  = 2δ+1–N. 
 
For N large and δ small, this probability will be minuscule, and certainly smaller than any 
significance level we might happen to set. Consequently, for the sequences with short programs 
(i.e., those whose programs have length no greater than δ), Fisher’s approach applied to such 
rejection regions would warrant eliminating the chance hypothesis H. And indeed, this is exactly 
the conclusion reached by Chaitin, Kolmogorov, and Solomonoff. Kolmogorov even invoked the 
language of statistical mechanics to describe this result, calling the random sequences high 
entropy sequences, and the nonrandom sequence low entropy sequences.19 To sum up, the 
collection of algorithmically compressible (and therefore nonrandom) sequences has small 
probability among the totality of sequences, so that observing such a sequence is reason to look 
for explanations other than chance. 
 
 
5 Prespecifications vs. Specifications 
 
There is an important distinction between prespecifications and specifications that I now need to 
address. To do so, let me review where we are in the argument. The basic intuition I am trying to 
formalize is that specifications are patterns delineating events of small probability whose 
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occurrence cannot reasonably be attributed to chance. With such patterns, we saw that the order 
in which pattern and event are identified can be important. True, we did see some clear instances 
of patterns being identified after the occurrence of events and yet being convincingly used to 
preclude chance in the explanation of those events (cf. the rejection regions induced by 
probability density functions as well as classes of highly compressible bit strings — see sections 
3 and 4 respectively). Even so, for such after-the-event patterns, some additional restrictions 
needed to be placed on the patterns to ensure that they would convincingly eliminate chance.  
 
In contrast, we saw that before-the-event patterns, which we called prespecifications, require no 
such restrictions. Indeed, by identifying a pattern in advance of an event, a prespecification 
precludes the identification of the event’s underlying pattern with reference to its occurrence. In 
other words, with prespecifications you can’t just read the pattern off the event. The case of 
prespecifications is therefore particularly simple. Not only is the pattern identified in advance of 
the event, but with prespecifications only one pattern corresponding to one possible event is 
under consideration.  
 
To see that prespecifications place no restriction on the patterns capable of ruling out chance, 
consider the following bit string: 
 
(R) 11000011010110001101111111010001100011011001110111 
 00011001000010111101110110011111010010100101011110.  
 
This string in fact resulted from tossing a fair coin and treating heads as “1” and tails as “0” (we 
saw this string earlier in section 4). Now, imagine the following scenario. Suppose you just 
tossed a coin 100 times and observed this sequence. In addition, suppose a friend was watching, 
asked for the coin, and you gave it to him. Finally, suppose the next day you meet your friend 
and he remarks, “It’s the craziest thing, but last night I was tossing that coin you gave me and I 
observed the exact same sequence of coin tosses you observed yesterday [i.e., the sequence 
(R)].” After some questioning on your part, he assures you that he was in fact tossing that very 
coin you gave him, giving it good jolts, trying to keep things random, and in no way cheating. 
Question: Do you believe your friend? The natural reaction is to be suspicious and think that 
somewhere, somehow, your friend (or perhaps some other trickster) was playing shenanigans. 
Why? Because prespecified events of small probability are very difficult to recreate by chance. 
It’s one thing for highly improbable chance events to happen once. But for them to happen twice 
is just too unlikely. The intuition here is the widely accepted folk-wisdom that says “lightning 
doesn’t strike twice in the same place.” Note that this intuition is taken quite seriously in the 
sciences. It is, for instance, the reason origin-of-life researchers tend to see the origin of the 
genetic code as a one-time event. Although there are some variations, the genetic code is 
essentially universal. Thus, for the same genetic code to emerge twice by undirected material 
mechanisms would simply be too improbable.20  
 
With the sequence (R) treated as a prespecification, its chance occurrence is not in question but 
rather its chance reoccurrence. That raises the question, however, whether it is possible to rule 
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out the chance occurrence of an event in the absence of its prior occurrence. This question is 
important because specifications, as I indicated in section 1, are supposed to be patterns that nail 
down design and therefore that inherently lie beyond the reach of chance. Yet, the sequence (R) 
does not do this. Granted, when treated as a prespecification, (R) rules out the event’s chance 
reoccurrence. But the sequence itself displays no pattern that would rule out its original 
occurrence by chance. Are there patterns that, if exhibited in events, would rule out their original 
occurrence by chance? 
 
To see that the answer is yes, consider the following sequence (again, treating “1” as heads and 
“0” as tails; note that the designation ψR here is meant to suggest pseudo-randomness): 
 
 (ψR) 01000110110000010100111001011101110000000100100011 
 01000101011001111000100110101011110011011110111100.  
 
As with the sequence (R), imagine that you and your friend are again together. This time, 
however, suppose you had no prior knowledge of (ψR) and yet your friend comes to you 
claiming that he tossed a coin last night and witnessed the sequence (ψR). Again, he assures you 
that he was tossing a fair coin, giving it good jolts, trying to keep things random, and in no way 
cheating. Do you believe him? This time you have no prespecification, that is, no pattern given 
to you in advance which, if the corresponding event occurred, would convince you that the event 
did not happen by chance. So, how will you determine whether (ψR) happened by chance?  
 
One approach is to employ statistical tests for randomness. A standard trick of statistics 
professors with an introductory statistics class is to divide the class in two, having students in 
one half of the class each flip a coin 100 times, writing down the sequence of heads and tails on a 
slip of paper, and having students in the other half each generate purely with their minds a 
“random looking” string of coin tosses that mimics the tossing of a coin 100 times, also writing 
down the sequence of heads and tails on a slip of paper. When the students then hand in their 
slips of paper, it is the professor’s job to sort the papers into two piles, those generated by 
flipping a fair coin and those concocted in the students’ heads. To the amazement of the students, 
the statistics professor is typically able to sort the papers with 100 percent accuracy. 
 
There is no mystery here. The statistics professor simply looks for a repetition of six or seven 
heads or tails in a row to distinguish the truly random from the pseudo-random sequences. In a 
hundred coin flips, one is quite likely to see six or seven such repetitions.21 On the other hand, 
people concocting pseudo-random sequences with their minds tend to alternate between heads 
and tails too frequently. Whereas with a truly random sequence of coin tosses there is a 50 
percent chance that one toss will differ from the next, as a matter of human psychology people 
expect that one toss will differ from the next around 70 percent of the time. If you will, after 
three or four repetitions, humans trying to mimic coin tossing with their minds tend to think its 
time for a change whereas coins being tossed at random suffer no such misconception.  
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How, then, will our statistics professor fare when confronted with the sequences (R) and (ψR)? 
We know that (R) resulted from chance because it represents an actual sequence of coin tosses. 
What about (ψR)? Will it be attributed to chance or to the musings of someone trying to mimic 
chance? According to the professor’s crude randomness checker, both (R) and (ψR) would be 
assigned to the pile of sequences presumed to be truly random because both contain a seven-fold 
repetition (seven heads in a row for (R), seven tails in a row for (ψR)). Everything that at first 
blush would lead us to regard these sequences as truly random checks out. There are 
approximately 50 alternations between heads and tails (as opposed to the 70 that would be 
expected from humans trying to mimic chance). What’s more, the relative frequencies of heads 
and tails check out (approximately 50 heads and 50 tails). Thus, it is not as though the coin 
supposedly responsible for generating (ψR) was heavily biased in favor of one side versus the 
other. 
 
And yet (ψR) is anything but random. To see this, rewrite this sequence by inserting vertical 
strokes as follows: 
 
(ψR) 0|1|00|01|10|11|000|001|010|011|100|101|110|111|0000|0001|0010|0011| 
 0100|0101|0110|0111|1000|1001|1010|1011|1100|1101|1110|1111|00.  
 
By dividing (ψR) this way it becomes evident that this sequence was constructed simply by 
writing binary numbers in ascending lexicographic order, starting with the one-digit binary 
numbers (i.e., 0 and 1), proceeding to the two-digit binary numbers (i.e., 00, 01, 10, and 11), and 
continuing until 100 digits were recorded. The sequence (ψR), when continued indefinitely, is 
known as the Champernowne sequence and has the property that any N-digit combination of bits 
appears in this sequence with limiting frequency 2–N. D. G. Champernowne identified this 
sequence back in 1933.22 
 
The key to defining specifications and distinguishing them from prespecifications lies in 
understanding the difference between sequences such as (R) and (ψR). The coin tossing events 
signified by (R) and (ψR) are each highly improbable. And yet (R), for all we know, could have, 
and did, arise by chance whereas (ψR) cannot plausibly be attributed to chance. Let us now 
analyze why that is the case.  
 
 
6 Specificity 
 
The crucial difference between (R) and (ψR) is that (ψR) exhibits a simple, easily described 
pattern whereas (R) does not. To describe (ψR), it is enough to note that this sequence lists 
binary numbers in increasing order. By contrast, (R) cannot, so far as we can tell, be described 
any more simply than by repeating the sequence. Thus, what makes the pattern exhibited by 
(ψR) a specification is that the pattern is easily described but the event it denotes is highly 
improbable and therefore very difficult to reproduce by chance. It’s this combination of pattern-
simplicity (i.e., easy description of pattern) and event-complexity (i.e., difficulty of reproducing 
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the corresponding event by chance) that makes the pattern exhibited by (ψR) — but not (R) — a 
specification.23  
 
This intuitive characterization of specification needs now to be formalized. We begin with an 
agent S trying to determine whether an event E that has occurred did so by chance according to 
some chance hypothesis H (or, equivalently, according to some probability distribution P(·|H)). S 
notices that E exhibits a pattern T. For simplicity, we can think of T as itself an event that is 
entailed by the event E. Thus, the event E might be a die toss that lands six and T might be the 
composite event consisting of all die tosses that land on an even face. When T is conceived as an 
event, we’ll refer to it as a target. Alternatively, T can be conceived abstractly as a pattern that 
precisely identifies the event (target) T. In that case, we refer to T as a pattern. As a pattern, T is 
typically describable within some communication system. In that case, we may also refer to T, 
described in this communication system, as a description. Thus, for instance, the phrase 
“displaying an even face” describes a pattern that maps onto a (composite) event in which a die 
lands either two, four, or six. Typically, when describing the pattern T, I’ll put the description in 
quotes; yet, when talking about the event that this pattern maps onto, I’ll refer to it directly and 
leave off the quotes.  
 
To continue our story, given that S has noticed that E exhibits the pattern T, S’s background 
knowledge now induces a descriptive complexity of T, which measures the simplest way S has of 
describing T. Let us denote this descriptive complexity of T by ϕ′S(T).24 Note that the pattern T 
need not be uniquely associated with the event E — S is trying to find a simply described pattern 
to which E conforms, but it may be that there are still simpler ones out there. Note also that 
simplicity here is with respect to S’s background knowledge and is therefore denoted by a 
complexity measure ϕ′S, thereby making the dependence of this measure on S explicit.25 
 
How should we think of ϕ′S? S, to identify a pattern T exhibited by an event E, formulates a 
description of that pattern. To formulate such a description, S employs a communication system, 
that is, a system of signs. S is therefore not merely an agent but a semiotic agent. Accordingly, 
ϕ′S(T) denotes the complexity/semiotic cost that S must overcome in formulating a description of 
the pattern T. This complexity measure is well-defined and is not rendered multivalent on 
account of any semiotic subsystems that S may employ. We may imagine, for instance, a 
semiotic agent S who has facility with various languages (let us say both natural and artificial 
[e.g., computational programming] languages) and is able to describe the pattern T more simply 
in one such language than another. In that case, the complexity ϕ′S(T) will reflect the simplest of 
S’s semiotic options for describing T.  
 
Since the semiotic agents that formulate patterns to eliminate chance are finite rational agents 
embodied in a finite dimensional spacetime manifold (i.e., our universe), there are at most 
countably many of them, and these in turn can formulate at most finitely many patterns. 
Accordingly, the totality of patterns that S’s cognitive apparatus is able to distinguish is finite; 
and for all such rational agents embodied in the finite dimensional spacetime manifold that is our 
universe (whether it is bounded or unbounded), we can represent the totality of patterns available 
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to such S’s as a sequence of patterns T1, T2, T3, ... This sequence, as well as the totality of such 
agents, is at most countably infinite. Moreover, within the known physical universe, which is of 
finite duration, resolution, and diameter, both the number of agents and number of patterns are 
finite. 
 
Each S can therefore rank order these patterns in an ascending order of descriptive complexity, 
the simpler coming before the more complex, and those of identical complexity being ordered 
arbitrarily. Given such a rank ordering, it is then convenient to define ϕS as follows: 
 

ϕS(T)   =  the number of patterns for which S’s semiotic description of them  
is at least as simple as S’s semiotic description of T.26  

 
In other words, ϕS(T) is the cardinality of {U ∈ patterns(Ω) | ϕ′S(U) ≤ ϕ′S(T)} where patterns(Ω) is 
the collection of all patterns that identify events in Ω. 
 
Thus, if ϕS(T) = n, there are at most n patterns whose descriptive complexity for S does not 
exceed that of T. ϕS(T) defines the specificational resources that S associates with the pattern T. 
Think of specificational resources as enumerating the number of tickets sold in a lottery: the 
more lottery tickets sold, the more likely someone is to win the lottery by chance. Accordingly, 
the bigger ϕS(T), the easier it is for a pattern of complexity no more than ϕS(T) to be exhibited in 
an event that occurs by chance. 
 
To see what’s at stake here, imagine S is a semiotic agent that inhabits a world of bit strings. 
Consider now the following two 100-bit sequences: 
 
(R) 11000011010110001101111111010001100011011001110111 
 00011001000010111101110110011111010010100101011110 
 
and 
 
(N) 11111111111111111111111111111111111111111111111111 
 11111111111111111111111111111111111111111111111111.  
 
The first is a sequence that resulted from tossing a fair coin (“1” for heads, “0” for tails), the 
second resulted by simply repeating “1” 100 times. As we saw in section 4, the descriptive 
complexity of (N) is therefore quite simple. Indeed, for semiotic agents like ourselves, there’s 
only one 100-bit sequence that has comparable complexity, namely,  
 
(N′) 00000000000000000000000000000000000000000000000000 
 00000000000000000000000000000000000000000000000000.  
 
Thus, for the pattern exhibited by either of these sequences, ϕS would evaluate to 2. On the other 
hand, we know from the Chaitin-Kolmogorov-Solomonoff theory, if S represents complexity in 



 18

terms of compressibility (see section 4), most bit sequences are maximally complex. 
Accordingly, ϕS, when evaluated with respect to the pattern in (R), will, in all likelihood, yield a 
complexity on the order of 1030.  
 
For a less artificial example of specificational resources in action, imagine a dictionary of 
100,000 (= 105) basic concepts. There are then 105 1-level concepts, 1010 2-level concepts, 1015 3-
level concepts, and so on. If “bidirectional,” “rotary,” “motor-driven,” and “propeller” are basic 
concepts, then the molecular machine known as the bacterial flagellum can be characterized as a 
4-level concept of the form “bidirectional rotary motor-driven propeller.” Now, there are 
approximately N = 1020 concepts of level 4 or less, which therefore constitute the specificational 
resources relevant to characterizing the bacterial flagellum. Next, define p = P(T|H) as the 
probability for the chance formation for the bacterial flagellum. T, here, is conceived not as a 
pattern but as the evolutionary event/pathway that brings about that pattern (i.e., the bacterial 
flagellar structure). Moreover, H, here, is the relevant chance hypothesis that takes into account 
Darwinian and other material mechanisms. We may therefore think of the specificational 
resources as allowing as many as N = 1020 possible targets for the chance formation of the 
bacterial flagellum, where the probability of hitting each target is not more than p. Factoring in 
these N specificational resources then amounts to checking whether the probability of hitting any 
of these targets by chance is small, which in turn amounts to showing that the product Np is 
small.  
 
The negative logarithm to the base 2 of this last number, –log2Np, we now define as the 
specificity of the pattern in question. Thus, for a pattern T, a chance hypothesis H, and a semiotic 
agent S for whom ϕS measures specificational resources, the specificity σ is given as follows: 
 

σ = –log2[ϕS(T)·P(T|H)]. 
 
Note that T in ϕS(T) is treated as a pattern and that T in P(T|H) is treated as an event (i.e., the 
event identified by the pattern).  
 
What is the meaning of this number, the specificity σ? To unpack σ, consider first that the 
product ϕS(T)·P(T|H) provides an upper bound on the probability (with respect to the chance 
hypothesis H) for the chance occurrence of an event that matches any pattern whose descriptive 
complexity is no more than T and whose probability is no more than P(T|H). The intuition here is 
this: think of S as trying to determine whether an archer, who has just shot an arrow at a large 
wall, happened to hit a tiny target on that wall by chance. The arrow, let us say, is indeed 
sticking squarely in this tiny target. The problem, however, is that there are lots of other tiny 
targets on the wall. Once all those other targets are factored in, is it still unlikely that the archer 
could have hit any of them by chance? That’s what ϕS(T)·P(T|H) computes, namely, whether of 
all the other targets T~ for which P(T~ |H) ≤ P(T|H) and ϕS(T~ ) ≤ ϕS(T), the probability of any of 
these targets being hit by chance according to H is still small. These other targets T~  are ones 
that, in other circumstances, S might have picked to match up an observed event with a pattern of 
equal or lower descriptive complexity than T. The additional requirement that these other targets 
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T~  have probability no more than P(T|H) ensures that S is ruling out large targets in assessing 
whether E happened by chance. Hitting large targets by chance is not a problem. Hitting small 
targets by chance can be.  
 
We may therefore think of ϕS(T)·P(T|H) as gauging the degree to which S might have been self-
consciously adapting the pattern T to the observed event E rather than allowing the pattern 
simply to flow out of the event. Alternatively, we may think of this product as providing a 
measure of the artificiality of imposing the pattern T on E. For descriptively simple patterns 
whose corresponding target has small probability, the artificiality is minimized. Note that putting 
the logarithm to the base 2 in front of the product ϕS(T)·P(T|H) has the effect of changing scale 
and directionality, turning probabilities into number of bits and thereby making the specificity a 
measure of information.27 This logarithmic transformation therefore ensures that the simpler the 
patterns and the smaller the probability of the targets they constrain, the larger specificity.  
 
To see that the specificity so defined corresponds to our intuitions about specificity in general, 
think of the game of poker and consider the following three descriptions of poker hands: “single 
pair,” “full house,” and “royal flush.” If we think of these poker hands as patterns denoted 
respectively by T1, T2, and T3, then, given that they each have the same description length (i.e., 
two words for each), it makes sense to think of these patterns as associated with roughly equal 
specificational resources. Thus, ϕS(T1), ϕS(T2), and ϕS(T3) will each be roughly equal. And yet, 
the probability of one pair far exceeds the probability of a full house which, in turn, far exceeds 
the probability of a royal flush. Indeed, there are only 4 distinct royal-flush hands but 3744 
distinct full-house hands and 1,098,240 distinct single-pair hands,28 implying that P(T2|H) will be 
three orders of magnitude larger than P(T3|H) and P(T1|H) will be three orders of magnitude 
larger than P(T2|H) (T1, T2, and T3 corresponding respectively to a single pair, a full house, and a 
royal flush, and H corresponding to random shuffling). It follows that ϕS(T2)·P(T2|H) will be 
three orders of magnitude larger than ϕS(T3)·P(T3|H) (since we are assuming that ϕS(T2) and 
ϕS(T3) are roughly equal), implying that when we take the negative logarithm to the base 2, the 
specificity associated with the full house pattern will be about 10 less than the specificity 
associated with the royal flush pattern. Likewise, the specificity of the single pair pattern will be 
about 10 less than that of the full house pattern.  
 
In this example, specificational resources were roughly equal and so they could be factored out. 
But consider the following description of a poker hand: “four aces and the king of diamonds.” 
For the underlying pattern here, which we’ll denote by T4, this description is about as simple as it 
can be made. Since there is precisely one poker hand that conforms to this description, its 
probability will be one-fourth the probability of getting a royal flush, i.e., P(T4|H) = P(T3|H)/4. 
And yet, ϕS(T4) will be a lot bigger than ϕS(T3). Note that ϕS is not counting the number of words 
in the description of a pattern but the number of patterns of comparable or lesser complexity in 
terms of word count, which will make ϕS(T4) many orders of magnitude bigger than ϕS(T3). 
Accordingly, even though P(T4|H) and P(T3|H) are pretty close, ϕS(T4)·P(T4|H) will be many 
orders of magnitude bigger than ϕS(T3)·P(T3|H), implying that the specificity associated with T4 

will be substantially smaller than the specificity associated with T3. This may seem 
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counterintuitive because, in absolute terms, “four aces and the king of diamonds” more precisely 
circumscribes a poker hand than “royal flush” (with the former, there is precisely one hand, 
whereas with the latter, there are four). Indeed, we can define the absolute specificity of T as  
–log2P(T|H). But specificity, as I’m defining it here, includes not just absolute specificity but 
also the cost of describing the pattern in question. Once this cost is included, the specificity of 
“royal flush” exceeds than the specificity of “four aces and the king of diamonds.”  
 
 
7 Specified Complexity 
 
Let us now return to our point of departure, namely, an agent S trying to show that an event E 
that has occurred is not properly attributed to a chance hypothesis H. Suppose that E conforms to 
the pattern T and that T has high specificity, that is, –log2[ϕS(T)·P(T|H)] is large or, 
correspondingly, ϕS(T)·P(T|H) is positive and close to zero. Is this enough to show that E did not 
happen by chance? No. What specificity tells us is that a single archer with a single arrow is less 
likely than not (i.e., with probability less than 1/2) to hit the totality of targets whose probability 
is less than or equal to P(T|H) and whose corresponding patterns have descriptive complexity 
less than or equal to that of T. But what if there are multiple archers shooting multiple arrows? 
Given enough archers with enough arrows, even if the probability of any one of them hitting a 
target with a single arrow is bounded above by ϕS(T)·P(T|H), and is therefore small, the 
probability of at least one of them hitting such a target with numerous arrows may be quite large. 
It depends on how many archers and how many arrows are available.  
 
More formally, if a pattern T is going to be adequate for eliminating the chance occurrence of E, 
it is not enough just to factor in the probability of T and the specificational resources associated 
with T. In addition, we need to factor in what I call the replicational resources associated with T, 
that is, all the opportunities to bring about an event of T’s descriptive complexity and 
improbability by multiple agents witnessing multiple events. If you will, the specificity 
ϕS(T)·P(T|H) (sans negative logarithm) needs to be supplemented by factors M and N where M is 
the number of semiotic agents (cf. archers) that within a context of inquiry might also be 
witnessing events and N is the number of opportunities for such events to happen (cf. arrows). 
Just because a single archer shooting a single arrow may be unlikely to hit one of several tiny 
targets, once the number of archers M and the number of arrows N are factored in, it may 
nonetheless be quite likely that some archer shooting some arrow will hit one of those targets. As 
it turns out, the probability of some archer shooting some arrow hitting some target is bounded 
above by  
 

M·N·ϕS(T)·P(T|H) 
 
If, therefore, this number is small (certainly less than 1/2 and preferably close to zero), it follows 
that it is less likely than not for an event E that conforms to the pattern T to have happened 
according to the chance hypothesis H. Simply put, if H was operative in the production of some 
event in S’s context of inquiry, something other than E should have happened even with all the 
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replicational and specificational resources relevant to E’s occurrence being factored in. Note that 
we refer to replicational and specificational resources jointly as probabilistic resources (compare 
section 2). Moreover, we define the logarithm to the base 2 of M·N·ϕS(T)·P(T|H) as the context-
dependent specified complexity of T given H, the context being S’s context of inquiry: 
 

χ~  = –log2[M·N·ϕS(T)·P(T|H)]. 
 
Note that the tilde above the Greek letter chi indicates χ~ ’s dependence on the replicational 
resources within S’s context of inquiry. In a moment, we’ll consider a form of specified 
complexity that is independent of the replicational resources associated with S’s context of 
inquiry and thus, in effect, independent of S’s context of inquiry period (thereby strengthening 
the elimination of chance and the inference to design). For most purposes, however, χ~  is 
adequate for assessing whether T happened by chance. The crucial cut-off, here, is 
M·N·ϕS(T)·P(T|H) < 1/2: in this case, the probability of T happening according to H given that all 
relevant probabilistic resources are factored is strictly less than 1/2, which is equivalent to χ~  =  
–log2[M·N·ϕS(T)·P(T|H)] being strictly greater than 1. Thus, if χ~  > 1, it is less likely than not 
that an event of T’s descriptive complexity and improbability would happen according to H even 
if as many probabilistic resources as are relevant to T’s occurrence are factored in.  
 
To see how all this works, consider the following example from Dan Brown’s wildly popular 
novel The Da Vinci Code. The heroes, Robert Langdon and Sophie Neveu, find themselves in an 
ultra-secure, completely automated portion of a Swiss bank (“the Depository Bank of Zurich”). 
Sophie’s grandfather, before dying, had revealed the following ten digits separated by hyphens: 
13-3-2-21-1-1-8-5. Langdon is convinced that this is the bank account number that will open a 
deposit box containing crucial information about the Holy Grail. We pick up the storyline here:29 
 

The cursor blinked. Waiting. 
 
Ten digits. Sophie read the numbers off the printout, and Langdon typed them in. 
 

ACCOUNT NUMBER: 
1332211185 

 
When he had typed the last digit, the screen refreshed again. A message in several languages appeared. 
English was on top. 
 

CAUTION: 
Before you strike the enter key, please check the 

accuracy of your account number. 
For your own security, if the computer does not 
recognize the account number, this system will  

automatically shut down. 
 
 “Fonction terminer,” Sophie said, frowning. “Looks like we only get one try.” Standard ATM machines 
allowed users three attempts to type in a PIN before confiscating their bank card. This was obviously no 
ordinary cash machine…. 
 
 “No.” She pulled her hand away. “This isn’t the right account number.” 
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 “Of course it is! Ten digits. What else would it be?” 
 
 “It’s too random.” 
 
Too random? Langdon could not have disagreed more. Every bank advised its customers to choose PINs at 
random so nobody could guess them. Certainly clients here would be advised to choose their account 
numbers at random.  
 
Sophie deleted everything they had just typed in and looked up at Langdon, her gaze self-assured. “It’s far 
too coincidental that this supposedly random account number could be rearranged to form the Fibonacci 
sequence.”  
 
 [The digits that Sophie’ grandfather made sure she received posthumously, namely, 13-3-2-21-1-1-8-5, can 
be rearranged as 1-1-2-3-5-8-13-21, which are the first eight numbers in the famous Fibonacci sequence. In 
this sequence, numbers are formed by adding the two immediately preceding numbers. The Fibonacci 
sequence has some interesting mathematical properties and even has applications to biology.30] 
 
Langdon realized she had a point. Earlier, Sophie had rearranged this account number into the Fibonacci 
sequence. What were the odds of being able to do that? 
 
Sophie was at the keypad again, entering a different number, as if from memory. “Moreover, with my 
grandfather’s love of symbolism and codes, it seems to follow that he would have chosen an account 
number that had meaning to him, something he could easily remember.” She finished typing the entry and 
gave a sly smile. “Something that appeared random but was not.” 

 
Needless to say, Robert and Sophie punch in the Fibonacci sequence 1123581321 and retrieve 
the crucial information they are seeking. 
 
This example offers several lessons about the (context-dependent) specified complexity χ~ . Let’s 
begin with P(T|H), T here is the Fibonacci sequence 1123581321. This sequence, if produced at 
random (i.e., with respect to the uniform probability distribution denoted by H), would have 
probability 1010− , or 1 in 10 billion. This is P(T|H). Note that for typical ATM cards, there are 
usually sixteen digits, and so the probability is typically on the order of 1510−  (not 1610−  because 
the first digit is usually fixed; for instance, Visa cards all begin with the digit “4”).  
 
What about the specificational resources associated with 1123581321, that is, ϕS(T)? S here is 
either Sophie Neveu or Robert Langdon. Because T is the Fibonacci sequence, ϕS(T), when 
computed according to an appropriate minimal description length metric, will be considerably 
less than what it would be for a truly random sequence (for a truly random sequence, ϕS(T) 
would be on the order of 1010  for most human inquirers S — recall section 4). What about M and 
N? In this context, M is the number of people who might enter the Depository Bank of Zurich to 
retrieve the contents of an account. Given the exclusiveness of this bank as represented in the 
novel, it would be fair to say that not more than 100 people (allowing repeated visits by a given 
person) would attempt to do this per day. Over the course of 100 years, or 36,500 days, there 
would in consequence not be more than 3,650,000 attempts to retrieve information from any 
accounts at the Depository Bank of Zurich over its entire history. That leaves N. N is the number 
of attempts each such person has to retrieve the contents of an account. For most ATM machines, 
N is 3. But for the ultra-secure Depository Bank of Zurich, N is 1. Indeed, the smaller N, the 
better the security. Thus, with the Da Vinci Code example,  
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χ~   =  –log2[3,650,000·ϕS(T)· 1010− ]  ≈  –log2[ 410− ·ϕS(T)]. 

 
In general, the bigger M·N·ϕS(T)·P(T|H) — and, correspondingly, the smaller its negative 
logarithm (i.e., χ~ ) — the more plausible it is that the event denoted by T could happen by 
chance. In this case, if T were a truly random sequence (as opposed to the Fibonacci sequence), 
ϕS(T), as we observed earlier, would be on the order of 1010 , so that  
 

χ~   ≈  –log2[ 410− ·ϕS(T)]  ≈  –log2[ 410− · 1010 ]  ≈  –20. 
 
On the other hand, if ϕS(T) were on the order of 310  or less, χ~  would be greater than 1, which 
would suggest that chance should be eliminated. The chance event, in this case, would be that the 
bank account number had been accidentally reproduced and its contents accidentally retrieved, 
and so the elimination of chance would amount to the inference that this had not happened 
accidentally. Clearly, reproducing the right account number did not happen by accident in the 
case of Neveu and Langdon — they were given specific information about the account from 
Neveu’s grandfather. Even so, this example points up the importance, in general, of password 
security and choosing passwords that are random. A value of χ~  bigger than 1 would point to the 
probability P(T|H) swamping probabilistic resources M·N·ϕS(T) (i.e., for the order of magnitude 
of 1/ P(T|H) to be considerably greater than that of M·N·ϕS(T)), so that if T happened, it could not 
properly be referred to chance.  
 
Another way to think about this example is from the Depository Bank of Zurich’s perspective. 
This bank wants only customers with specific information about their accounts to be able to 
access those accounts. It does not want accounts to be accessed by chance. Hence, it does not 
want the probabilistic resources M·N·ϕS(T) to swamp the probability P(T|H) (i.e., for the order of 
magnitude of M·N·ϕS(T) to exceed 1/ P(T|H)). If that were to be the case, accounts would be in 
constant danger of being randomly accessed. This is why the Depository Bank of Zurich required 
a 10-digit account number and why credit cards employ 16-digit account numbers (along with 
expiration dates and 3-digit security codes on the back). If, for instance, account numbers were 
limited to three digits, there would be at most 1,000 different account numbers, and so, with 
millions of users, it would be routine that accounts would be accessed accidentally (i.e., P(T|H) 
would equal a mere 1/1,000 and get swamped by M·N·ϕS(T), which would be in the millions). 
Bottom line: the (context-dependent) specified complexity χ~  is the key in all such assessments 
of account security. Indeed, it provides a precise determination and measurement of account 
security.  
 
As defined, χ~  is context sensitive, tied to the background knowledge of a semiotic agent S and 
to the context of inquiry within which S operates. Even so, it is possible to define specified 
complexity so that it is not context sensitive in this way. Theoretical computer scientist Seth 
Lloyd has shown that 12010  constitutes the maximal number of bit operations that the known, 
observable universe could have performed throughout its entire multi-billion year history.31 This 
number sets an upper limit on the number of agents that can be embodied in the universe and the 
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number of events that, in principle, they can observe. Accordingly, for any context of inquiry in 
which S might be endeavoring to determine whether an event that conforms to a pattern T 
happened by chance, M·N will be bounded above by 12010 . We thus define the specified 
complexity of T given H (minus the tilde and context sensitivity) as  
 

χ = –log2[ 12010 ·ϕS(T)·P(T|H)]. 
 
To see that χ is independent of S’s context of inquiry, it is enough to note two things: (1) there is 
never any need to consider replicational resources M·N that exceed 12010  (say, by invoking 
inflationary cosmologies or quantum many-worlds) because to do so leads to a wholesale 
breakdown in statistical reasoning, and that’s something no one in his saner moments is prepared 
to do (for the details about the fallacy of inflating one’s replicational resources beyond the limits 
of the known, observable universe, see my article “The Chance of the Gaps”32). (2) Even though 
χ depends on S’s background knowledge through ϕS(T), and therefore appears still to retain a 
subjective element, the elimination of chance only requires a single semiotic agent who has 
discovered the pattern in an event that unmasks its non-chance nature. Recall the Champernowne 
sequence discussed in sections 5 and 6 (i.e., (ψR)). It doesn’t matter if you are the only semiotic 
agent in the entire universe who has discovered its binary-numerical structure. That discovery is 
itself an objective fact about the world, and it rightly gets incorporated into χ via ϕS(T). 
Accordingly, that sequence would not rightly be attributed to chance precisely because you were 
the one person in the universe to appreciate its structure. 
 
It follows that if 12010 ·ϕS(T)·P(T|H) < 1/2 or, equivalently, that if χ = –log2[ 12010 ·ϕS(T)·P(T|H)] > 
1, then it is less likely than not on the scale of the whole universe, with all replicational and 
specificational resources factored in, that E should have occurred according to the chance 
hypothesis H. Consequently, we should think that E occurred by some process other than one 
characterized by H. Since specifications are those patterns that are supposed to underwrite a 
design inference, they need, minimally, to entitle us to eliminate chance. Since to do so, it must 
be the case that  
 

χ = –log2[ 12010 ·ϕS(T)·P(T|H)] > 1, 
 
we therefore define specifications as any patterns T that satisfy this inequality. In other words, 
specifications are those patterns whose specified complexity is strictly greater than 1. Note that 
this definition automatically implies a parallel definition for context-dependent specifications: a 
pattern T is a context-dependent specification provided that its context-dependent specified 
complexity χ~  is strictly greater than 1. Such context-dependent specifications are widely 
employed in adjudicating between chance and design (cf. the Da Vinci Code example). Yet, to 
be secure in eliminating chance and inferring design on the scale of the universe, we need the 
context-independent form of specification.  
 
As an example of specification and specified complexity in their context-independent form, let 
us return to the bacterial flagellum. Recall the following description of the bacterial flagellum 
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given in section 6: “bidirectional rotary motor-driven propeller.” This description corresponds to 
a pattern T. Moreover, given a natural language (English) lexicon with 100,000 (= 105) basic 
concepts (which is supremely generous given that no English speaker is known to have so 
extensive a basic vocabulary), we estimated the complexity of this pattern at approximately ϕS(T) 
= 1020 (for definiteness, let’s say S here is me; any native English speaker with a some of 
knowledge of biology and the flagellum would do). It follows that –log2[ 12010 ·ϕS(T)·P(T|H)] > 1 
if and only if P(T|H) < 140

2
1 10−× , where H, as we noted in section 6, is an evolutionary chance 

hypothesis that takes into account Darwinian and other material mechanisms and T, conceived 
not as a pattern but as an event, is the evolutionary pathway that brings about the flagellar 
structure (for definiteness, let’s say the flagellar structure in E. coli). Is P(T|H) in fact less than 

140
2
1 10−× , thus making T a specification? The precise calculation of P(T|H) has yet to be done. 
But some methods for decomposing this probability into a product of more manageable 
probabilities as well as some initial estimates for these probabilities are now in place.33 These 
preliminary indicators point to T’s specified complexity being greater than 1 and to T in fact 
constituting a specification.  
 
 
8 Design Detection 
 
Having defined specification, I want next to show how this concept works in eliminating chance 
and inferring design. Inferring design by eliminating chance is an old problem. Almost 300-years 
ago, the mathematician Abraham de Moivre addressed it as follows: 
 

The same Arguments which explode the Notion of Luck, may, on the other side, be useful in some Cases to 
establish a due comparison between Chance and Design:  We may imagine Chance and Design to be, as it 
were, in Competition with each other, for the production of some sorts of Events, and may calculate what 
Probability there is, that those Events should be rather owing to one than to the other.  To give a familiar 
Instance of this, Let us suppose that two Packs of Piquet-Cards being sent for, it should be perceived that 
there is, from Top to Bottom, the same Disposition of the Cards in both packs; let us likewise suppose that, 
some doubt arising about this Disposition of the Cards, it should be questioned whether it ought to be 
attributed to Chance, or to the Maker’s Design:  In this Case the Doctrine of Combinations decides the 
Question; since it may be proved by its Rules, that there are the odds of above 263130830000 Millions of 
Millions of Millions of Millions to One, that the Cards were designedly set in the Order in which they were 
found.34 

 
To “explode the notion of luck,” de Moivre requires a highly improbable prespecified event in 
which one ordered deck of cards rules out the chance reoccurrence of another with the same 
order. In particular, he places chance and design in competition so that the defeat of chance on 
the basis of improbability leads to the victory of design. Resolving this competition between 
chance and design is the whole point of specification.  
 
The fundamental claim of this paper is that for a chance hypothesis H, if the specified 
complexity χ = –log2[ 12010 ·ϕS(T)·P(T|H)] is greater than 1, then T is a specification and the 
semiotic agent S is entitled to eliminate H as the explanation for the occurrence of any event E 
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that conforms to the pattern T (S is similarly entitled to eliminate H when the context-dependent 
specified complexity χ~  = –log2[M·N·ϕS(T)·P(T|H)] is greater than one, only this time, because 
M·N will be less than 12010 , the strength with which χ~  eliminates H will be less than what it is 
for χ).  
 
The first question we therefore need to answer is whether a specified complexity greater than 1 
adequately eliminates the chance hypothesis H at all. Bayesian and likelihood approaches say no, 
claiming that statistical rationality permits the elimination of chance hypotheses only in 
comparison with other chance hypotheses (thus treating design itself as a chance hypothesis). But 
these approaches, I argue in Addendum 2, invariably presuppose an account of specification. 
Moreover, the conceptual difficulties that proponents of comparative approaches to statistical 
rationality have cited against straight chance-elimination approaches are, in my view, met by the 
apparatus of specified complexity, a point I argued at length in The Design Revolution.35 I will 
therefore take it as settled that specified complexity is an adequate tool for eliminating individual 
chance hypotheses.  
 
Now, in many statistical applications, the elimination of H (whether on Fisherian or Bayesian or 
other grounds), does not rule out chance as such but merely invites alternative chance hypotheses 
H´. (Think of a lopsided die and H as the hypothesis that all sides will appear with probability 
1/6; even if specified complexity eliminates H, that still leaves alternative hypotheses H´ for 
which the probability of the faces are not all equal.) Thus, if specified complexity is to rule out 
chance überhaupt, we must have a good grasp of what chance hypotheses would have been 
operating to produce the observed event E whose chance status is in question. Suppose the 
relevant collection of chance hypotheses that we have good reason to think were operating if the 
event E happened by chance is some collection of chance hypotheses {Hi}i∈I indexed by the 
index set I. Then, to eliminate all these chance hypotheses, χi = –log2[ 12010 ·ϕS(T)·P(T|Hi)] must 
be greater than 1 for each Hi. 
 
Granted, this would eliminate all the chance hypotheses in {Hi}i∈I, but would it eliminate all 
chance hypotheses überhaupt? Probabilistic arguments are inherently fallible in the sense that 
our assumptions about relevant probability distributions might always be in error. Thus, it is 
always a possibility that {Hi}i∈I omits some crucial chance hypothesis that might be operating in 
the world and account for the event E in question. But are we to take this possibility seriously in 
the absence of good evidence for the operation of such a chance hypothesis in the production of 
E? Indeed, the mere possibility that we might have missed some chance hypothesis is hardly 
reason to think that such a hypothesis was operating. Nor is it reason to be skeptical of a design 
inference based on specified complexity. Appealing to the unknown to undercut what we do 
know is never sound epistemological practice. Sure, we may be wrong. But unknown chance 
hypotheses (and the unknown material mechanisms that supposedly induce them) have no 
epistemic force in showing that we are wrong. Inquiry can throw things into question only by 
taking other things to be fixed. The unknown is not a fixed point. It cannot play such a role. 
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To see that it is illegitimate to appeal to unknown chance hypotheses to undercut the chance 
elimination methods that I am proposing, consider the place where these methods are most hotly 
contested, namely, biological origins. Take, for instance, the well known Miller-Urey 
experiment.36 This was one of the early primitive atmospheric simulation experiments designed 
to show that the building blocks of life could readily have formed on the early Earth. My interest 
here is not in how plausibly those experiments model what happened on the early Earth, but the 
logic by which these experiments were interpreted and by which inferences were drawn from 
them. In the Miller-Urey experiment, various compounds were placed in an apparatus, zapped 
with sparks to simulate lightning, and then the product was collected in a trap. Lo and behold, 
biologically significant chemical compounds were discovered, notably certain amino acids.  
 
In the 1950s, when this experiment was performed, it was touted as showing that a purely 
chemical solution to the origin of life was just around the corner. Since then, this enthusiasm has 
waned because such experiments merely yield certain rudimentary building blocks for life. No 
experiments since then have shown how these building blocks could, by purely chemical means 
(and thus apart from design), be built up into complex biomolecular systems needed for life (like 
proteins and multiprotein assemblages, to say nothing of fully functioning cells).37 The Miller-
Urey experiment showed that certain biologically significant chemical building blocks, which 
previously had only been synthesized in living systems, were now capable of being synthesized 
abiologically. Moreover, it showed that this could be done easily and reproducibly — anyone 
with the requisite laboratory equipment could replicate the experiment and its results. What this 
means, in statistical terms, is that the Miller-Urey experiment yielded its biologically significant 
chemical building blocks with high probability. Scientists, in turn, took this as evidence that a 
purely chemical solution of life’s origin was credible and that the need to invoke design or 
intelligence was dispensable.  
 
Here, again, we see de Moivre’s point about chance and design being in competition, only this 
time chance comes out the winner because the probabilities are sufficiently large.38 But if large 
probabilities vindicate chance and defeat design, why shouldn’t small probabilities do the 
opposite — vindicate design and defeat chance? Indeed, in many special sciences, everything 
from forensics to archeology to SETI (the Search for Extraterrestrial Intelligence), small 
probabilities do just that. Objections only get raised against inferring design on the basis of such 
small probability, chance elimination arguments when the designers implicated by them are 
unacceptable to a materialistic worldview, as happens at the origin of life, whose designer could 
not be an intelligence that evolved through purely materialistic processes. Parity of reasoning 
demands that if large probabilities vindicate chance and defeat design, then small probabilities 
should vindicate design and defeat chance. The job of specified complexity is to marshal these 
small probabilities in a way that convincingly defeats chance and vindicates design. 
 
At this point, critics of specified complexity raise two objections. First, they contend that 
because we can never know all the chance hypotheses responsible for a given outcome, to infer 
design because specified complexity eliminates a limited set of chance hypotheses constitutes an 
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argument from ignorance. But this criticism is misconceived. The argument from ignorance, also 
known as the appeal to ignorance or by the Latin argumentum ad ignorantiam, is  
 

the fallacy of arguing that something must be true because nobody can prove it false or, alternatively, that 
something must be false because nobody can prove it true. Such arguments involve the illogical notion that 
one can view the lack of evidence about a proposition as being positive evidence for it or against it. But 
lack of evidence is lack of evidence, and supports no conclusion. An example of an appeal to ignorance: 
Styrofoam cups must be safe; after all, no studies have implicated them in cancer. The argument is 
fallacious because it is possible that no studies have been done on those cups or that what studies have been 
done have not focused on cancer ( as opposed to other diseases).39 

 
In eliminating chance and inferring design, specified complexity is not party to an argument 
from ignorance. Rather, it is underwriting an eliminative induction. Eliminative inductions argue 
for the truth of a proposition by actively refuting its competitors (and not, as in arguments from 
ignorance, by noting that the proposition has yet to be refuted). Provided that the proposition 
along with its competitors form a mutually exclusive and exhaustive class, eliminating all the 
competitors entails that the proposition is true. (Recall Sherlock Holmes’s famous dictum: 
“When you have eliminated the impossible, whatever remains, however improbable, must be the 
truth.”) This is the ideal case, in which eliminative inductions in fact become deductions. But 
eliminative inductions can be convincing without knocking down every conceivable alternative, 
a point John Earman has argued effectively. Earman has shown that eliminative inductions are 
not just widely employed in the sciences but also indispensable to science.40 Suffice it to say, by 
refusing the eliminative inductions by which specified complexity eliminates chance, one 
artificially props up chance explanations and (let the irony not be missed) eliminates design 
explanations whose designing intelligences don’t match up conveniently with a materialistic 
worldview.41 
 
And this brings us to the other objection, namely, that we must know something about a 
designer’s nature, purposes, propensities, causal powers, and methods of implementing design 
before we can legitimately determine whether an object is designed. I refer to the requirement 
that we must have this independent knowledge of designers as the independent knowledge 
requirement. This requirement, so we are told, can be met for materially embodied intelligences 
but can never be met for intelligences that cannot be reduced to matter, energy, and their 
interactions.42 By contrast, to employ specified complexity to infer design is to take the view that 
objects, even if nothing is known about how they arose, can exhibit features that reliably signal 
the action of an intelligent cause. There are two competing approaches to design detection here 
that cut to the heart of what it is to know that something is designed. The one approach requires 
independent knowledge of the designer. The other says that the signature of design can be read 
without any such knowledge. Which approach is correct? I submit the latter, which, happily, is 
also consistent with employing specified complexity to infer design.  
 
To see that the independent knowledge requirement, as a principle for deciding whether 
something is designed, is fundamentally misguided, consider the following admission by Elliott 
Sober, who otherwise happens to embrace this requirement: “To infer watchmaker from watch, 
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you needn’t know exactly what the watchmaker had in mind; indeed, you don’t even have to 
know that the watch is a device for measuring time. Archaeologists sometimes unearth tools of 
unknown function, but still reasonably draw the inference that these things are, in fact, tools.”43 
Sober’s remark suggests that design inferences may look strictly to features of designed objects 
and thus presuppose no knowledge about the characteristics of the designer.  
 
His remark, therefore, raises the following question: when the evidence for design is 
circumstantial, as invariably it is when we apply the techniques of design detection described in 
this paper, what do we know about any putative designer who may have been responsible for an 
object in question? In fact, we may know nothing about the designer. Nor would it matter. To be 
sure, we may know that other designers in our experience were able to bring about an object of 
the sort we are considering. But what if the designer actually responsible for the object brought it 
about by means unfathomable to us (e.g., by some undreamt of technologies)? This is the 
problem of multiple realizability, and it undercuts the independent knowledge requirement 
because it points up that what leads us to infer design is not knowledge of designers and their 
capabilities but knowledge of the patterns exhibited by designed objects (a point that specified 
complexity captures precisely).  
 
This last point underscores another problem with the independent knowledge requirement, 
namely, what I call the problem of inductive regress. Suppose, like Sober, one wants to argue 
that independent knowledge of designers is the key to inferring design.44 Consider now some 
archeologists in the field who stumble across an arrowhead. How do they know that it is indeed 
an arrowhead and thus the product of design? What sort of archeological background knowledge 
had to go into their design hypothesis? Certainly, the archeologists would need past experience 
with arrowheads. But how did they recognize that the arrowheads in their past experience were 
designed? Did they see humans actually manufacture those arrowheads? If so, how did they 
recognize that these humans were acting deliberately, as designing agents, and not just randomly 
chipping away at random chunks of rock (carpentry and sculpting entail design; but whittling and 
chipping, though performed by intelligent agents, do not)? As is evident from this line of 
reasoning, the induction needed to recognize design can never get started. Our ability to 
recognize design must therefore arise independently of induction and therefore independently of 
any independent knowledge requirement about the capacities of designers. In fact, it arises 
directly from the patterns in the world that signal intelligence, to wit, from specifications. 
 
Another problem with the independent knowledge requirement is that it hinders us from inferring 
design that outstrips our intellectual and technological sophistication. I call this the problem of 
dummied down design: the independent knowledge requirement limits our ability to detect design 
to the limits we impose on designers. But such limits are artificial. Suppose, for instance, that the 
molecular biology of the cell is in fact intelligently designed. If so, it represents nanotechnology 
of a sophistication far beyond anything that human engineers are presently capable of or may 
ever be capable of. By the independent knowledge requirement, we have no direct experience of 
designers capable of such design work. Thus, even if system after molecular biological system 
exhibited high specified complexity, the independent evidence requirement would prevent us 
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from recognizing their design and keep us wedded to wholly inadequate materialistic 
explanations of these systems.  
 
But consider next a thought experiment. Imagine that space travelers show up on Earth loaded 
with unbelievably advanced technology. They tell us (in English) that they’ve had this 
technology for hundreds of millions of years and give us solid evidence of this claim (perhaps by 
pointing to some star cluster hundreds of millions of light years away whose arrangement 
signifies a message that confirms the aliens’ claim). Moreover, they demonstrate to us that with 
this technology they can, atom by atom and molecule by molecule, assemble the most complex 
organisms. Suppose we have good reason to think that these aliens were here at key moments in 
life’s history (e.g., at the origin of life, the origin of eukaryotes, and the origin of the animal 
phyla in the Cambrian). Suppose, further, that in forming life from scratch the aliens would not 
leave any trace (their technology is so advanced that they clean up after themselves perfectly — 
no garbage or any other signs of activity would be left behind). Suppose, finally, that none of the 
facts of biology are different from what they are now. Should we now think that life at key 
moments in its history was designed? 
 
We now have all the independent knowledge we could ever want for the existence and attributes 
of materially embodied designers capable of bringing about the complexity of life on earth. If, in 
addition, our best probabilistic analysis of the biological systems in question tells us that they 
exhibit high specified complexity and therefore that unguided material processes could not have 
produced them with anything like a reasonable probability, would a design inference only now 
be warranted? Would design, in that case, become a better explanation than materialistic 
evolution simply because we now have independent knowledge of designers with the capacity to 
produce biological systems? 
 
This prospect, however, should raise a worry. The facts of biology, after all, have not changed, 
and yet design would be a better explanation if we had independent knowledge of designers 
capable of producing, say, the animal phyla of the Cambrian. Note that there’s no smoking gun 
here (no direct evidence of alien involvement in the fossil record, for instance). All we know by 
observation is that beings with the power to generate life exist and could have acted. Would it 
help to know that the aliens really like building carbon-based life? But how could we know that? 
Do we simply take their word for it? If design is a better explanation simply because we have 
independent knowledge of technologically advanced space aliens, why should it not be a better 
explanation absent such evidence? If conventional evolutionary theory is so poor an explanation 
that it would cave the instant space aliens capable of generating living forms in all their 
complexity could be independently attested, then why should it cease to be a poor explanation 
absent those space aliens? The point to appreciate is that specified complexity can demonstrate 
this poverty of explanation even now — apart from space aliens and bizarre thought 
experiments.   
 
In conclusion, suppose that our best understanding of the processes that could have been 
involved in the occurrence of an event E suggests that if E happened by chance, then one of the 
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chance hypotheses in {Hi}i∈I was responsible. Suppose, further, that the specified complexity 
associated with each of these chance hypotheses, that is, χi = –log2[ 12010 ·ϕS(T)·P(T|Hi)], is 
strictly greater than 1. In that case, we’ve eliminated all the chance hypotheses that might explain 
the occurrence of E (where E conforms to the pattern T). The inference to design is now 
immediate. Certainly it is a necessary condition, if a design inference is to hold, that all relevant 
chance hypotheses be eliminated. But this condition is also sufficient in that unknown chance 
hypotheses have no epistemic significance in defeating design. Moreover, the requirement that 
we have independent knowledge of the designer founders, as we have seen, on the multiple 
realizability, inductive regress, and dummied down design problems. In the presence of viable 
chance alternatives, design is an explanation of last resort. Yet, once specified complexity has 
rendered all relevant chance alternatives inviable, chance as such is eliminated and design can no 
longer be denied.  
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Addendum 1: Note to Readers or TDI & NFL 
 
Readers familiar with my books The Design Inference and No Free Lunch will note that my 
treatment of specification and specified complexity there (specificity, as such, does not appear 
explicitly in these books, though it is there implicitly) diverges from my treatment of these 
concepts in this paper. The changes in my account of these concepts here should be viewed as a 
simplification, clarification, extension, and refinement of my previous work, not as a radical 
departure from it. To see this, it will help to understand what prompted this new treatment of 
specification and specified complexity as well as why it remains in harmony with my past 
treatment.  
 
The first question a reader familiar with my past treatment of these concepts is likely to ask is 
whatever happened to such key notions as detachability, conditional independence, tractability, 
and universal probability bounds that in the past had characterized my account of specification. 
They are still here, but they no longer need to be made explicit because of a fundamental 
simplification to the account of specification that appears in this paper. The simplification results 
from not demanding that the theory of specification do double-duty as also a theory of 
prespecification. The problem, as I point out in section 5 of this paper, is that a theory of 
prespecification can do an excellent job of ruling out the reoccurrence of a chance events, but it 
cannot rule out whether prespecifications themselves resulted from chance — recall the 
difference between the sequence (R) and the Champernowne sequence (ψR) in sections 5 
through 7. The upshot of these considerations was that a theory of prespecifications can rightly 
tell you that lightning won’t strike twice in the same place, but it cannot tell you whether 
lightning that’s struck only once in a given place struck there by chance.  
 
By separating off prespecifications from specifications, the account of specifications becomes 
much more straightforward. With specifications, the key to overturning chance is to keep the 
descriptive complexity of patterns low. This was the point of the tractability condition (i.e., 
patterns satisfy this condition if their descriptive complexity is low). With prespecifications, by 
contrast, the descriptive complexity of patterns is irrelevant. Rather, with prespecifications, the 
key to overturning chance is the causal relation between the identification of a pattern and the 
occurrence of an event exhibiting the pattern. Provided that a pattern delineates an event/target of 
small probability and provided that an event that exhibits the pattern occurs after the pattern 
itself has been explicitly identified, the pattern will constitute a prespecification and therefore be 
suitable for eliminating chance. This was the point of the conditional independence condition 
(i.e., patterns automatically satisfy this condition if they are identified prior to the events that 
exhibit these patterns). The conditional independence condition prevents “cherry picking” or 
“data snooping.” 
 
Interestingly, low descriptive complexity immediately confers conditional independence. The 
tractability condition, as originally conceived, ensures that the tractable patterns are those that 
can be constructed easily from information independent of the occurrence of the events they 
delineate. For prespecifications this is automatically the case because the prespecifications are 
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always given prior to the events in question, and thus provide the necessary information about 
themselves. But prespecifications need not be descriptively simple. Think of a coin that’s flipped 
1,000 times. The pattern it exhibits will (in all likelihood) be unique in the history of coin tossing 
and will not be identifiable apart from the actual event of flipping that coin 1,000 times. Such a 
pattern, if a prespecification, will be tractable but it will not be descriptively simple. On the other 
hand, a Champernowne sequence of length 1,000 can be readily constructed on the basis of a 
simple number-theoretic scheme. The underlying pattern here, in virtue of its descriptive 
simplicity, is therefore tractable with respect to information that is conditionally independent of 
any actual coin tossing event. In The Design Inference, I referred to this relation between 
tractability and conditional independence as detachability and used detachability to define 
specification. But given that descriptive simplicity instantly yields conditional independence, 
detachability itself becomes a dispensable concept once descriptive simplicity supplants 
tractability in the definition of specification.45  
 
To separate off prespecifications from specifications means that specifications can no longer be 
patterns of high descriptive complexity. This constitutes a slight restriction on the concept of 
specification (as when it used to be characterized in terms of detachability), but this restriction is 
well worth the clarity it brings to the concept of specification. Because specifications will no 
longer include prespecifications of high descriptive complexity, to rule out the chance 
reoccurrence of a highly improbable event whose pattern has high descriptive complexity and 
which was identified in advance of the event, it is necessary to modify the accounts of specificity 
and specified complexity for prespecifications. The key is to see that for prespecifications, the 
specificational resources ϕS(T) can be taken to be simply 1. Indeed, if the pattern is specified in 
advance of an event, there is no point to asking what other targets of comparable descriptive 
complexity might happen. With prespecifications, there is one and only one target. It follows that 
the specificity and specified complexity (whether context-dependent or context-independent) for 
a target T can be defined simply by dropping ϕS(T) from the mathematical formulas that define 
these concepts. Accordingly, the specificity for a prespecification T is simply  σ = –log2[P(T|H)] 
(i.e., what we previously referred to as the “absolute specificity”) and its specified complexity is 
simply χ~  = –log2[M·N·P(T|H)] (with 12010  substituted for M·N in the context-independent case).  
 
Next, in connecting my treatment of specification here to my past work, let me address a concept 
that has played a central role in my previous work on specified complexity but appears to play 
less of a role here, namely, that of a universal probability bound. In my past work, I argued on 
the basis of various physical constraints on the known, observable universe that for any 
specification delineating a target of probability 15010− , an event matching that target could not 
happen by chance. That argument, however, worked best for prespecifications. For specifications 
generally, descriptive complexity needed also to be factored in. For the examples I tended to 
consider, however, this never proved to be a problem because the descriptive complexity was so 
low that it could readily be assimilated into the universal probability bound, which was so 
conservative that it swamped the descriptive complexity of patterns qua specifications. My 
present treatment resolves this discrepancy. 
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Where does the universal probability bound reside in my current treatment of specification? It 
comes up through Seth Lloyd’s 12010  upper limit on the number of bit operations possible in the 
observable universe throughout its multibillion-year history.46 This number, since it also places 
an upper limit on any replicational resources M·N, plays a key role in the definition of the 
context-independent formulation of specified complexity: χ = –log2[ 12010 ·ϕS(T)·P(T|H)]. And 
since χ must be greater than 1 for T to be a specification, this means that P(T|H) must be less 
than 12010− . Thus, in the treatment of specification given here, we have a universal probability 
bound of 12010−  that is thirty orders of magnitude bigger than my previous one (which sat at 

15010− ), but for which the descriptive complexity of T as measured by the specificational 
resources ϕS(T) must be explicitly factored in (previously, I let them simply go along for the 
ride). Other things being equal, universal probability bounds are better (i.e., more useful in 
scientific applications) the bigger they are — provided, of course that they truly are universal. 
 
Even so, in The Design Inference and No Free Lunch I suggested that a universal probability 
bound is impervious any probabilistic resources that might be brought to bear against it. In those 
books, I offered 15010−  as the only probability bound anybody would ever need to draw design 
inferences. On the other hand, in this paper I’m saying that 12010−  serves that role, but that it 
needs to be adjusted by the specificational resources ϕS(T), thus essentially constraining P(T|H) 
not by 12010−  but by 12010− /ϕS(T). If you will, instead of a static universal probability bound of 

15010− , we now have a dynamic one of 12010− /ϕS(T) that varies with the specificational resources 
ϕS(T) and thus with the descriptive complexity of T. For many design inferences that come up in 
practice, it seems safe to assume that ϕS(T) will not exceed 3010  (for instance, in section 7 a very 
generous estimate for the descriptive complexity of the bacterial flagellum came out to 2010 ). 
Thus, as a rule of thumb, 12010− / 3010  = 15010−  can still be taken as a reasonable (static) universal 
probability bound. At any rate, for patterns qua targets T that satisfy P(T|H) ≤ 15010−  and that at 
first blush appear to have low descriptive complexity (if only because our natural language 
enables us to describe them simply), the burden is on the design critic to show either that the 
chance hypothesis H is not applicable or that ϕS(T) is much greater than previously suspected. 
Getting too lucky is never a good explanation, scientific or otherwise. Thus, for practical 
purposes, taking 15010−  as a universal probability bound still works. If you will, the number stays 
the same, but the rationale for it has changed slightly. 
 
One final difference that should be pointed out regarding my past work on specification is the 
difference between specified complexity then and now. In the past, specified complexity, as I 
characterized it, was a property describing a relation between a pattern and an event delineated 
by that pattern. Accordingly, specified complexity either obtained or did not obtain as a certain 
relation between a pattern and an event. In my present treatment, specified complexity still 
captures this relation, but it is now not merely a property but an actual number calculated by a 
precise formula (i.e., χ = –log2[ 12010 ·ϕS(T)·P(T|H)]). This number can be negative, zero, or 
positive. When the number is greater than 1, it indicates that we are dealing with a specification. 
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Addendum 2: Bayesian Methods 
 
The approach to design detection that I propose eliminates chance hypotheses when the 
probability of matching a suitable pattern (i.e., specification) on the basis of these chance 
hypotheses is small and yet an event matching the pattern still happens (i.e., the arrow lands in a 
small target). This eliminative approach to statistical rationality, as epitomized in Fisher’s 
approach to significance testing, is the one most widely employed in scientific applications.47 
Nevertheless, there is an alternative approach to statistical rationality that is at odds with this 
eliminative approach. This is the Bayesian approach, which is essentially comparative rather than 
eliminative, comparing the probability of an event conditional on a chance hypothesis to its 
probability conditional on a design hypothesis, and preferring the hypothesis that confers the 
greater probability. I’ve argued at length elsewhere that Bayesian methods are inadequate for 
drawing design inferences.48 Among the reasons I’ve given is the need to assess prior 
probabilities in employing these methods, the concomitant problem of rationally grounding these 
priors, and the lack of empirical grounding in estimating probabilities conditional on design 
hypotheses.  
 
Here, in this addendum, I want to focus on what I regard as the most damning problem facing the 
Bayesian approach to design detection, namely, that it tacitly presupposes the very account of 
specification that it was meant to preclude. Bayesian theorists see specification as an 
incongruous and dispensable feature of design inferences. For instance, Timothy and Lydia 
McGrew, at a symposium on design reasoning, dismissed specification as having no “epistemic 
relevance.”49 At the same symposium, Robin Collins, also a Bayesian, remarked: “We could 
roughly define a specification as any type of pattern for which we have some reasons to expect 
an intelligent agent to produce it.”50 Thus, a Bayesian use of specification might look as follows: 
given some event E and a design hypothesis D, a specification would assist in inferring design 
for E if the probability of E conditional on D is increased by noting that E conforms to the 
specification. 
 
But there’s a crucial difficulty here. Consider the case of the New Jersey election commissioner 
Nicholas Caputo accused of rigging ballot lines. (This example appears in a number of my 
writings and has been widely discussed on the Internet.51 A ballot line is the order of candidates 
listed on a ballot. It is to the advantage of a candidate to be listed first on a ballot line because 
voters tend to vote more readily for such candidates.) Call Caputo’s ballot line selections the 
event E. E consists of 41 selections of Democrats and Republicans in sequence with Democrats 
outnumbering Republicans 40 to 1. For definiteness, let’s assume that Caputo’s ballot line 
selections looked as follows (to my knowledge, newspapers covering the story never reported the 
actual sequence): 
 

DDDDDDDDDDDDDDDDDDDDDDRDDDDDDDDDDDDDDDDDD 
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Thus, we suppose that for the initial 22 times, Caputo chose the Democrats to head the ballot 
line; then at the 23rd time, he chose the Republicans (note the underlined “R”); after which, for 
the remaining times, he chose the Democrats. 
 
If Democrats and Republicans were equally likely to have come up (as Caputo claimed), this 
event has probability approximately 1 in 2 trillion. Improbable, yes, but by itself not enough to 
implicate Caputo in cheating. Highly improbable events after all happen by chance all the time 
— indeed, any sequence of forty-one Democrats and Republicans whatsoever would be just as 
unlikely (i.e., have the same “absolute specificity” in the language of section 6). What, then, do 
we need, additionally, to confirm cheating and thereby design? To implicate Caputo in cheating, 
it’s not enough merely to note a preponderance of Democrats over Republicans in some 
sequence of ballot line selections. Rather, one must also note that a preponderance as extreme as 
this is highly unlikely.  
 
In other words, it wasn’t the event E (Caputo’s actual ballot line selections) whose improbability 
the Bayesian theorist needed to compute but the composite event E* consisting of all possible 
ballot line selections that exhibit at least as many Democrats as Caputo selected. This event — 
E* — consists of 42 possible ballot line selections and has improbability roughly 1 in 50 billion. 
It’s this event and this improbability on which the New Jersey Supreme Court rightly focused 
when it deliberated about whether Caputo had in fact cheated.52 Moreover, it’s this event that the 
Bayesian needs to identify and whose probability the Bayesian needs to compute to perform a 
Bayesian analysis.  
 
But how does the Bayesian identify this event? Let’s be clear that observation never hands us 
composite events like E* but only elementary outcomes like E (i.e., Caputo’s actual ballot line 
selection and not the ensemble of ballot line selections as extreme as Caputo’s). But whence this 
composite event? Within the Fisherian framework, the answer is clear: E* is the rejection region 
given by counting the number of Democrats selected in 41 tries. E* is easily seen to have high 
specificity in the sense of section 6 and in most contexts will exhibit specified complexity and 
constitute a specification.53 E* is what the court used in deciding Caputo’s case and that’s what 
Bayesians use. Bayesians, however, offer no account of how they identify the composite events 
qua specifications to which they assign probabilities. If the only events they ever considered 
were elementary outcomes, there would be no problem. But that’s not the case. Bayesians 
routinely consider such composite events. In the case of Bayesian design inferences (and 
Bayesians definitely want to draw a design inference with regard to Caputo’s ballot line 
selections), those composite events are given by specifications. 
 
Let me paint the picture more starkly. Consider an elementary outcome E. Suppose, initially, we 
see no pattern that gives us reason to expect an intelligent agent produced it. But then, 
rummaging through our background knowledge, we suddenly discover a pattern that signifies 
design in E. Under a Bayesian analysis, the probability of E given the design hypothesis 
suddenly jumps way up. That, however, isn’t enough to allow us to infer design. As is typical in 
the Bayesian scheme, we need to compare a probability conditional on a design hypothesis D to 
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one conditional on a chance hypothesis H. But for which event do we compute these 
probabilities? As it turns out, not for the elementary outcome E, but for the composite event E* 
consisting of all elementary outcomes that exhibit the pattern signifying design. In other words, 
we need to compare P(E*|D) to P(E*|H), forming the likelihood ratio P(E*|D)/P(E*|H) and 
showing that the numerator overwhelms the denominator. The same analysis comparing P(E|D) 
to P(E|H) is irrelevant. Indeed, it does no good to argue for E being the result of design on the 
basis of some pattern unless the entire collection of elementary outcomes that exhibit that pattern 
(i.e., E*) is itself improbable on the chance hypothesis. 
 
To infer design, Bayesian methods therefore need to compare the probability of E* conditional 
on the design hypothesis with the probability of E* conditional on the chance hypothesis. E* 
here is, of course, what previously we referred to as a target given by a pattern T. It follows that 
the Bayesian approach to statistical rationality is parasitic on the Fisherian approach and can 
properly adjudicate only among competing hypotheses that the Fisherian approach has thus far 
failed to eliminate. In particular, the Bayesian approach offers no account of how it arrives at the 
composite events (qua targets qua patterns qua specifications) on which it performs a Bayesian 
analysis. The selection of such events is highly intentional and, in the case of Bayesian design 
inferences, presupposes an account of specification. Specification’s role in detecting design, far 
from being refuted by the Bayesian approach, is therefore implicit throughout Bayesian design 
inferences. 
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Reasoning: The Bayesian Approach, 2nd ed. (LaSalle, Ill.: Open Court, 1993), 192 and  Richard M. Royall , 
Statistical Evidence: A Likelihood Paradigm (London: Chapman & Hall, 1997), 61–62. 

48See Dembski, The Design Revolution, ch. 33 as well as my article “Detecting Design by Eliminating Chance: 
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49”Symposium on Design Reasoning, Calvin College, May 2001. Transcripts of this symposium will at some 
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50Ibid. 
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Statistics, 2nd ed. (New York: W. H. Freeman, 1993), 376–377. 
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