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Abstract
This paper develops a general theory of uniform probability for compact
metric spaces. Special cases of uniform probability include Lebesgue mea-
sure, the volume element on a Riemannian manifold, Haar measure, and
various fractal measures (all suitably normalized). This paper first ap-
peared fall of 1990 in the Journal of Theoretical Probability, vol. 3, no.
4, pp. 611—626. The key words by which this article was indexed were:
ε-capacity, weak convergence, uniform probability, Hausdorff dimension,
and capacity dimension.

1 Overview
Defined for compact metric spaces, uniform probabilities adapt probability to
geometry by assigning equal probabilities to geometrically equivalent portions
of the underlying metric space (equivalent geometric portions of space being
characterized in terms of equivalent limiting behavior of maximal ε-dispersed
sets as ε goes to zero). Since finite sets are always compact metric spaces, the
simplest and most basic example of a uniform probability is the probability that
assigns equal probability to each point from the finite set. Common examples of
uniform probabilities include Lebesgue measure on the unit interval and, more
generally, Lebesgue measure (suitably normalized) on compact subsets of Rn
with nonempty interiors (the geometry being given by the standard Euclidean
metric); Haar measure on a compact group (the geometry being given by a
translation invariant metric); and the volume element (suitably normalized) on
a compact Riemannnian manifold (the geometry being given by the Riemannian
metric). A less obvious example of a uniform probability is the measure induced
on the Cantor set by the Cantor-Lebesgue singular function (treated as a cu-
mulative distribution function–see Wheeden and Zygmund [1, p. 35]). The
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formulation of uniform probability in this paper includes all these examples as
special cases.
Constructing a uniform probability on a compact metric space (K, d) is

straightforward: because the uniform probability on a finite set is already well-
defined and cannot be anything other than the equiprobability measure, consider
the uniform probabilities on those finite subsets of K whose points are “evenly
spaced” with respect of the metric d. Next, take a weak limit of these finitely
supported uniform probabilities as the “mesh” of their support points goes to
zero. Such weak limits are reasonably described as uniform probabilities. More
formally, for maximal ε-dispersed sets (which by compactness of K are always
finite for positive ε), consider the uniform probabilities defined on these finite
sets. A weak subsequential limit of such probability measures as ε ↓ 0 is, by
definition, a semiuniform probability. If all such subsequential limits are identi-
cal, the limit is, by definition, a uniform probability and the space is said to be
uniformizable.
Not every compact metric space is uniformizable (see section 5). Even so,

it is possible to establish an effective criterion for uniformizability. With this
criterion, it is in turn possible to show that for a large class of subspaces of a
uniformizable space, these subspaces are themselves uniformizable (see section
4). Moreover, on this class, the uniform probability of a subspace equals the uni-
form probability of the total space conditioned on the subspace (see Proposition
2). Using this result one can prove that a class of locally compact, separable
metric spaces built up from an increasing sequence of uniformizable compact
neighborhoods has what may rightly be called a volume element (see section 4).
The volume element is uniquely determined up to positive scalar multiple. This
construction corresponds to the construction of Lebesgue measure on all of R
from Lebesgue measure on intervals [-n,n] as n→∞.
In sum, uniform probabilities on compact metric spaces are weak topological

limits of uniform probabilities on finite sets. These uniform probabilities on
finite sets are equiprobabilities defined for maximal collections of evenly spaced
points from the metric space as the spacing goes to zero.

2 ε-Capacity
Let K denote a compact metric space with metric d. For ε > 0, let Dε(K)
denote the ε-dispersed subsets of K, i.e.,

Dε(K) = {S ∈ 2K : for all distinct x, y ∈ S, d(x, y) > ε}.

Denote the cardinality of any set S by |S|. By an ε-net in K, we mean an
ε-dispersed set S in K for which the addition of any further point in K to S
renders it no longer ε-dispersed (i.e., doing so destroys the ε-dispersed property).
Denote the collection of these byNε(K). Observe that for S ∈ Nε(K), any point
in K is strictly within ε of some point of S. By an ε-lattice in K is meant an
ε-dispersed set S in K whose cardinality is
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Cε(K) = sup{|T | : T ∈ Dε(K)}.

Since K is compact, this number, called the ε-capacity of K, is finite and
can be attained by an element of Dε(K). We denote the collection of ε-
lattices in K by Lε(K). If the context is clear, we write Dε, Nε, Lε, and
Cε. If K is nonempty, then Dε, Nε, and Lε are nonempty and Cε is a
positive integer. Observe that Dε ⊃ Nε ⊃ Lε, with strict inclusion pos-
sible (e.g., for ε = 1/4, {0} ∈ Dε([0, 1]), {0, 1/3, 2/3, 1} ∈ Nε([0, 1]), and
{0, 1/4, 1/2, 3/4, 1} ∈ Lε([0, 1])). Variants of ε-capacity and its logarithm, ε-
entropy, have been employed in the approximation of functions, information
theory, and stochastic processes (see, repectively, Kolmogorov and Tihomirov
[2], Billingsley [3], and Dudley [4]).
Let K(K) denote the compact subsets of K. Then ε-capacity is a function

from (0,∞)×K(K) to the natural numbers N:

C : (0,∞)×K(K)→ N where (ε,X) 7−→ Cε(X).

Actually, the notion of an ε-lattice depends only on the total boundedness of
K. Thus, Cε(X) makes sense for any totally bounded X. Hence, we define the
following natural extension of ε-capacity:

C : (0,∞)× 2K → N.

Cε(·) is not determined on dense subsets: C1((0, 1)) = 1 whereas C1([0, 1]) = 2.
It is straightforward to show that for each positive ε, Cε(·) is a Choquet capacity
with respect to K(K) (see Jacobs [5, p. 421]).

3 Uniformizability

For a nonempty compact metric space (K, d), define the ε-probability on K by

Pε(X) = Cε(X)/Cε(K)

whereX an arbitrary subset ofK. ε-probability shares many properties with or-
dinary probabilities. Since ε-capacity is monotone, ε-probability is both monotone
and bounded by 1. Thus 0 6 Pε(·) 6 1; 0 is attained at ∅ and 1 at the total
space K. Since ε-capacity is subadditive, so is ε-probability. In fact, for sets X
and Y in K separated by ε, i.e., d(X,Y ) = inf{d(x, y) : x ∈ X and y ∈ Y } > ε,

Pε(X ∪ Y ) = Pε(X) +Pε(Y ).

Of primary interest here is the limiting behavior of Pε(·) as ε ↓ 0.
For a nonempty finite set S, the uniform probability on S is the probability

that assigns equal mass to each of the points. Denote this probability by δS .
Then
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δS = |S|−1
X
x∈S

δx

where δx is the point mass at x.

Let M(Ω) denote the Borel probability measures on the separable metric
space (Ω, d) with the topology of weak convergence. Denote the weak conver-
gence of measures µn to µ in M(S) by µn =⇒ µ. Now consider an infinite
compact metric space (K, d) and those probabilities µ defined on this space for
which there exist sequences ε0 ↓ 0 and lattices Sε0 ∈ Lε0(K) such that δSε0 =⇒ µ
as ε0 ↓ 0 (priming here indicates taking a sequence, and further priming indi-
cates taking further subsequences; thus ε00 indicates a subsequence of ε0). Call
such limits semiuniform probabilities (SUPs). SinceM(K) is itself compact (by
Prohorov’s theorem), SUPs always exist.

If K supports precisely one semiuniform probability, we call this uniquely
determined probability the uniform probability (UP) onK and callK uniformiz-
able. Observe that for K uniformizable with uniform probability µ, δSε =⇒ µ
as ε ↓ 0 for any choice of lattices Sε ∈ Lε(K): by definition all subsequential
weak limits of δSε are µ; sinceM(K) is weakly compact, it follows that the limit
can be taken across all ε. Observe also that for finite K and for S ∈ Lε(K),
when ε is small enough, δS is the uniform probability on K. Thus, one may
consistently include finite metric spaces within this framework. In particular,
all finite spaces are uniformizable.
A few notions related to weak convergence of probability measures need now

to be restated. For a measure µ on a separable metric space (Ω, d), the µ-
continuous sets play a crucial role: a subset A of Ω is µ-continuous if it is Borel
measurable and its boundary, ∂A, is µ-null, i.e., µ(∂A) = 0. The µ-continuous
sets form a field, i.e., they are closed under finite unions, finite intersections, and
complements. By the Portmanteau theorem (see Billingsley [6, pp. 15-17]), the
µ-continuous sets characterize weak convergence to µ (i.e., µn =⇒ µ iff µn(A)
−→ µ(A) for all µ—continuous sets A).
Next, define the ε-distension of a subspace A in Ω as

Aε = {x ∈ Ω : d(x,A) 6 ε}.

Observe that the ε-distension is always closed and, in the case of a singleton,
is just the closed ball of radius ε centered at the point. By A◦ and A we mean
respectively the interior and the closure of the subspace A. For a class U of
Borel subsets of Ω and a probability measure µ on Ω, let U|µ denote the µ-
continuous subsets of U. We say that U is a convergence-determining class
(CDC) if for all measures µn and µ inM(Ω), µn(A) −→ µ(A) for each A in U|µ
implies µn =⇒ µ. In a separable metric space, finite intersections of all open (or
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closed) balls centered on a dense subset form a CDC (see Billingsley [6, p. 18]).
In Euclidean space, subcollections of rectangles frequently form useful CDCs.

Lemma 1. Let U be a CDC on the separable metric space (Ω, d) and µ a
probability on Ω. Then U|µ is a CDC.

Proof. Let νn and ν be in M(Ω) and suppose νn −→ ν on (U|µ)|ν . It is
enough to show that νn =⇒ ν. Let t satisfy 0 < t < 1. It is straightforward to
show that restricting U first to µ-continuous sets and then to ν-continuous sets
is the same as restricting U to [(1− t)µ+ tν]-continuous sets. Thus,

(U|µ)|ν = U|(1−t)µ+tν .

Since νn −→ ν on (U|µ)|ν = U|(1−t)µ+tν , it follows that (1− t)µ+ tνn −→
(1 − t)µ + tν on U|(1−t)µ+tν for all 0 < t < 1. Since U is a CDC, it follows
that (1 − t)µ + tνn =⇒ (1 − t)µ + tν for all 0 < t < 1. Let f be any bounded
continuous real function on Ω and denote its sup-norm by kfk∞. Then

¯̄̄̄Z
fdνn −

Z
fdν

¯̄̄̄
6

¯̄̄̄Z
fdνn −

Z
fd[(1− t)µ+ tνn]

¯̄̄̄
+

¯̄̄̄Z
fd[(1− t)µ+ tνn]−

Z
fd[(1− t)µ+ tν]

¯̄̄̄
+

¯̄̄̄Z
fd[(1− t)µ+ tν]−

Z
fdν

¯̄̄̄
6 4(1− t) kfk∞

+

¯̄̄̄Z
fd[(1− t)µ+ tνn]−

Z
fd[(1− t)µ+ tν]

¯̄̄̄
.

Now let ε positive be given and choose t so close to 1 that 4(1−t) kfk∞ < ε/2.
Since (1− t)µ+ tνn =⇒ (1− t)µ+ tν, choose N so large that for n > N ,¯̄̄̄Z

fd[(1− t)µ+ tνn]−
Z

fd[(1− t)µ+ tν]

¯̄̄̄
< ε/2.

Then for n > N ,
¯̄R

fdνn −
R
fdν

¯̄
< ε. Therefore νn =⇒ ν. ¥

We are now in a position to prove the main result on uniformizability.

Theorem 1. Let (K, d) be a compact metric space. Then the following two
results hold:

1. If K is uniformizable with uniform probability µ, then limε↓0 Pε(X) =
µ(X) for all µ-continuous sets X in K.
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2. If limε↓0 Pε(·) exists on some CDC in K, then K is uniformizable.

Proof. First suppose K is uniformizable with uniform probability µ. Let X
be an arbitrary Borel set of K. For each positive ε find an ε-lattice for K, say
Sε. Then

δSε(X) = |Sε|−1
X
x∈Sε

δx(X)

=
|Sε ∩X|
|Sε|

=
|Sε ∩X|
Cε(K)

6 Cε(X)

Cε(K)

= Pε(X)

since Sε ∩ X is an ε-dispersed subset of X and hence |Sε ∩X| 6 Cε(X). We
therefore have

δSε(X) 6 Pε(X) (3.1)

For each ε, find ε∗ such that ε 6 ε∗ 6 2ε and Sε ∩ ∂(Xε∗) = ∅. This is
always possible because ∂(Xε∗) ranges over an (uncountably) infinite number of
disjoint sets whereas Sε is finite. Since X and K − (Xε∗)◦ are at least ε apart,
it follows that

Cε(X) +Cε(K − (Xε∗)◦) = Cε(X ∪ [K − (Xε∗)◦])
6 Cε(K)

= |Sε|
=

¯̄̄
Sε ∩Xε∗

¯̄̄
+
¯̄̄
Sε −Xε∗

¯̄̄
=

¯̄̄
Sε ∩Xε∗

¯̄̄
+
¯̄̄
Sε −

³
Xε∗

´
◦
¯̄̄

with the last equality holding because Sε ∩ ∂(Xε∗) = ∅.
Consider next that

Cε(K − (Xε∗)◦) >
¯̄
Sε − (Xε∗)◦

¯̄
.

Hence,

Cε(X) 6
¯̄
Sε ∩Xε∗

¯̄
.
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Moreover, since Cε(X) = |Sε|, dividing both sides of the last inequality by this
number yields

Pε(X) 6 δSε(X
ε∗). (3.2)

Combining inequalities (3.1) and (3.2), we get

δSε(X) 6 Pε(X) 6 δSε(X
ε∗), where ε 6 ε∗ 6 2ε. (3.3)

Now, if X is µ-continuous, then by uniformizability of K, δSε(X) −→ µ(X)
as ε ↓ 0. Moreover, for any positive η such that Xη is µ-continuous (i.e., for all
but countably many η by the usual arguments for distensions),

µ(Xη) = lim
ε↓0

δSε(X
η)

> limsup δSε(X
ε∗)

ε↓0

> liminf δSε(X
ε∗)

ε↓0

> lim
ε↓0

δSε(X)

= µ(X).

Since we may choose η arbitrarily small and since µ(Xη) −→ µ(X) = µ(X)
as η ↓ 0 (because µ(∂X) = 0), it follows that the limit as ε ↓ 0 of δSε(Xε∗)
exists and equals µ(X):

lim
ε↓0

δSε(X
ε∗) = µ(X).

Hence, by inequality (3.3), we see that Pε(X) is constrained between two
quantities that converge to µ(X). It follows that limε↓0Pε(X) = µ(X). This
proves the first part of the theorem.
Next, suppose that limε↓0Pε(·) exists on some CDC in K, say U. Suppose

µ and ν are semiuniform probabilities (SUPs) on K. To prove the second part
of the theorem, it is enough to show that µ = ν. If µ and ν are SUPs, then
there are sequences ε0 and η0 converging down to 0 and corresponding sequences
of ε0- and η0-lattices Sε0 and Tη0 such that δSε0 and δTη0 converge weakly to µ
and ν respectively.
Consider U|(µ+ν)/2, which by Lemma 1 is also a CDC. For A in U|(µ+ν)/2

δSε0 (A) −→ µ(A) as ε0 ↓ 0
and

δTη0 (A) −→ ν(A) as η0 ↓ 0.
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Inequality (3.3) may be applied to a SUP provided that we restrict ourselves
to εs for which δSε converges to that SUP. Thus,

Pε0(A) −→ µ(A) as ε0 ↓ 0
and

Pη0(A) −→ ν(A) as η0 ↓ 0
since A is both µ- and ν-continuous. But, by assumption, Pε(·) converges on
the CDC U independently of how ε goes to 0. It follows that µ(A) = ν(A).
Hence, µ and ν agree on a CDC. This is enough to establish the equality of
the measures (see Billingsley [6, p. 18]). This proves the second part of the
theorem. ¥

Corollary 1. Let (K,d) be a compact metric space and ε0 be a sequence of
positive numbers converging down to zero.

1. Suppose K has a SUP µ for which there exist Sε0 in Lε0(K) such that
δSε0 =⇒ µ as ε0 ↓ 0. Then limε0↓0Pε0(X) = µ(X) for all µ-continuous sets
X in K(K).

2. If limε0↓0Pε0(·) exists on some CDC in K for the sequence ε0, then there
is a unique SUP µ such that for any sequence of ε0-lattices Sε0 in Lε0(K),
δSε0 =⇒ µ as ε0 ↓ 0.

3. Suppose Sε0 and Tε0 are two sequences of ε0-lattices in Lε0(K) such that
ε0 ↓ 0. Suppose further that µ is a SUP for which δSε0 =⇒ µ as ε0 ↓ 0.
Then δTε0 =⇒ µ as ε0 ↓ 0.

Proof. The first and second parts of this corollary simply restate the first and
second parts of the previous theorem for restricted εs: by restricting ε to the
sequence ε0, the proof of Theorem 1 goes through in its entirety. The third part
of this corollary follows immediately from parts one and two. ¥

Remark. The third part of this corollary shows that, in terms of weak con-
vergence, finitely supported uniform probabilities on ε-lattices of fixed ε do not
differ very much. The following proposition shows that all such lattices are
ε-indistinguishable.

Proposition 1. Let (K, d) be a compact metric space. Suppose S is ε-dispersed
and T is an ε-lattice in K. Then there is an injection ϕ : S −→ T such that
d(s, ϕ(s)) < ε for all s ∈ S. In particular, any two ε-lattices can be placed in
one-to-one correspondence so that corresponding elements are ε-neighbors.

Proof. This result follows immediately from the “marriage lemma” of Philip
Hall [7]. ¥
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4 Subspaces, Conditioning, and Volume

Uniform probabilities can be generalized to subspaces of a compact metric space
(K, d). Let us say that a Borel set X in K is uniformizable with uniform prob-
ability ν provided that its closure, X, is uniformizable with uniform probability
ν and ν(∂X) = 0. Equivalently, the uniform probability ν on X is supported
on X◦, the interior of X. It therefore makes sense to speak of ν as a uniform
probability on both X and X. The following proposition indicates that uniform
probabilities behave consistently across a wide class of subspaces.

Proposition 2 (Consistency). Suppose (K,d) is a uniformizable compact met-
ric space with uniform probability µ. LetX be a µ-continuous set ofK for which
µ(X) > 0. ThenX is uniformizable and its uniform probability ν onX is simply
the conditional probability of µ with respect to X, i.e.,

ν(·) = µ(·|X).
Proof. Since µ(∂X) = 0 by µ-continuity, µ(·|X) and µ(·|X) are equal and
are supported on X◦. We therefore assume that X is compact, i.e., X = X.
It suffices to show that X is uniformizable in our original sense with uniform
probability ν(·) = µ(·|X). Since µ(∂X) = 0, treating µ(·|X) as a probability
on the compact metric space (X, d), we see that the µ(·|X)-continuous sets in
X are exactly the µ-continuous sets of K contained in X. This collection is a
CDC on X. Let Y be a µ-continuous set in X. Then

µ(Y |X) = µ(Y ∩X)/µ(X)
= µ(Y )/µ(X)

= lim
ε↓0
Pε(Y )/Pε(X) [by Theorem 1]

= lim
ε↓0
[Cε(Y )/Cε(K)]/[Cε(X)/Cε(K)]

= lim
ε↓0
Cε(Y )/Cε(X)

= lim
ε↓0
PX
ε (Y )

where Pε(·) is the ε-probability on K and PX
ε (·) is the ε-probability on X. We

have shown that the ε-probability on X converges on a CDC and that its limit
agrees with the conditional probability of µ on X. It follows by Theorem 1 that
X is uniformizable and that its uniform probability is µ(·|X). ¥

One can construct volume elements that are uniquely determined up to
positive scalar multiple on a class of locally compact separable metric spaces
built out of uniformizable compacta. We essentially imitate the construction
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of Lebesgue measure on all of R from Lebesgue measure on intervals [−n, n] as
n ↑ ∞. Call an increasing sequence of sets Kn in a topological space S strictly
increasing if (Kn+1)

◦ ⊃ Kn, i.e., sets are contained in the interiors of their
successors.

Lemma 2. Let (S, d) be a locally compact separable metric space satisfying the
Heine-Borel property, i.e., sets are compact if and only if they are both closed
and bounded. Suppose Kn and Ln are strictly increasing sequences in S , are
compact with nonempty interiors, and satisfy the following four conditions:

1. Kn ↑ S and Ln ↑ S.
2. Kn and Ln are all uniformizable with uniform probabilities µn and νn
respectively.

3. µn+1(∂Kn) = νn+1(∂Ln) = 0.

4. µn(K1) and νn(L1) are positive for all n.

Then any measures µ and ν on S that satisfy

µ(· ∩Kn) = µn(·)/µn(K1) (4.1)

ν(· ∩ Ln) = νn(·)/νn(L1) (4.2)

are positive scalar multiples of each other.

Remark. Given the other assumptions, assumption (3) is, strictly speaking,
unnecessary in the proof of this lemma. It is included here because it is an
assumption that always needs to be made in constructing volume elements.

Proof. First observe that measures µ and ν are uniquely specified by equations
(4.1) and (4.2). Fix x0 in S and choose R > 0 such that BR(x0), the closed ball
of radius R at x0, containsK1 and L1 and is simultaneously µ- and ν-continuous
(observe that µ and ν are both σ-finite and hence all but countably many Rs
are candidates). Because of the Heine-Borel property we can choose N such
that KN and LN ⊃ BR(x0).
By the consistency of uniform probabilities on boundary-null sets, BR(x0)

is uniformizable with a uniform probability σ satisfying

σ(·) = µN (·|BR(x0))

σ(·) = νN (·|BR(x0))

Observe that this makes sense since we chose BR(x0) ⊃ K1 and L1 and so µn
and νn and are positive on BR(x0) for all n (assumption 4). Thus we have

µN (· ∩BR(x0))/µN (BR(x0)) = νN (· ∩BR(x0))/νN (BR(x0))
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or equivalently,

[µN (· ∩BR(x0))/µN (K1)]/[µN (BR(x0))/µN (K1)]
= [νN (· ∩BR(x0))/νN (L1)]/[νN (BR(x0))/νN (L1)].

But this is just

µ(· ∩BR(x0))/µ(BR(x0)) = ν(· ∩BR(x0))/ν(BR(x0)).

This last equation holds for all R for which BR(x0) is simultaneously µ- and
ν-continuous and contains K1 and L1. Fix such an R–call it r. Let C =
µ(Br(x0))/ν(Br(x0)). Substituting Br(x0) in the preceding equation, we see
that C = µ(BR(x0))/ν(BR(x0)) for arbitrarily large R. Therefore,

µ(· ∩BR(x0)) = Cν(· ∩BR(x0))

for arbitrarily large R. It follows that µ = Cν. ¥

We can extend further the notion of uniformizability. Let (S, d) be a locally
compact separable metric space satisfying the Heine-Borel property. Suppose S
has a strictly increasing sequence of uniformizable compacta Kn with uniform
probabilities µn such that Kn ↑ S, Kn is µn+1-continuous in Kn+1, and µn(K1)
is positive for all n (i.e., the hypotheses of Lemma 2 are satisfied). We define
such S to be uniformizable and call the sequence of ordered pairs (Kn, µn) a
uniformization of S. Any measure µ on S that satisfies µ(·∩Kn) = µn(·)/µn(K1)
for all n is said to be a volume element on S. If the volume element is finite on
S, we call its normalization the uniform probability on S. This is consistent with
earlier definitions of uniform probability. The following theorem shows that
volume elements on a uniformizable space exist and are uniquely determined up
to positive scalar multiple.

Theorem 2. Let (S, d) be uniformizable with uniformization (Kn, µn). Then
S has a volume element µ corresponding to the uniformization (Kn, µn), i.e., a
measure µ on S satisfying µ(·∩Kn) = µn(·)/µn(K1). Any such volume element
is uniquely determined up to positive scalar multiple.

Proof. Uniqueness follows from Lemma 2. We define a set function eµ on the
bounded Borel sets of S: for any bounded Borel set X in S let

eµ(X) = µn(X)/µn(K1)

where n is any number for which Kn ⊃ X (because Kn is strictly increasing and
S satisfies the Heine-Borel property, this is always possible). To see that this is
well-defined, consider m < n for which Km and Kn ⊃ X. By consistency (i.e.,
Proposition 2)

µm(X)/µm(K1) = µn(X|Km)/µn(K1|Km)

= µn(X)/µn(K1).
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Thus eµ is well-defined and actually defines a measure when restricted to the
Borel sets of any bounded set. It follows that continuous functions with compact
support on S can be integrated against eµ. Thus eµ induces a positive linear
functional on the continuous functions with compact support on S. It follows by
the Riesz representation theorem (see Rudin [8]) that eµ extends to a measure
µ on all the Borel sets of S. µ is the volume element corresponding to the
uniformization (Kn, µn). ¥

To conclude this section, we prove a result which shows that (semi-) uniform
probabilities are supported on sets of maximal size or dimension.

Proposition 3. Let (K, d) be a compact metric space. Suppose U is an open
subset of K for which limε↓0Pε(U) = 0. Then every semiuniform probability is
supported on K − U .

Proof. Let µ be a semiuniform probability for which δSε0 =⇒ µ as ε0 ↓ 0,
where Sε0 is a sequence of ε0-lattices in Lε0(K) corresponding to the sequence
ε0. For x ∈ U , find η > 0 such that the closed ball Bη(x) is entirely contained
in U and is µ-continuous. It follows that δSε0 (Bη(x)) −→ µ(Bη(x)) as ε0 ↓ 0.
Therefore,

δSε0 (Bη(x)) 6 Pε0(Bη(x)) 6 Pε0(U) −→ 0 as ε0 ↓ 0

since by assumption Pε(U) −→ 0 independently of how ε goes to 0. It follows
that µ(Bη(x)) = 0. Since K is second countable, U is the countable union of
such µ-null neighborhoods. Hence µ(U) = 0. ¥

Define the capacity dimension of a totally bounded metric space (K, d) as

dimC(K) = limsupε↓0{(log 1/ε)−1[logCε(K)]}

(see Grassberger and Procaccia [9] for a general treatment). Since Pε(U) =
Cε(U)/Cε(K), the condition that this quotient go to zero as ε ↓ 0 indicates that
the dimensionality of the subspace U is smaller than that of the ambient space
K. Thus, no semiuniform probability includes in its support an open set whose
capacity dimension is strictly less than that of the total space. Alternatively,
semiuniform probabilities are supported on sets of maximal dimension. In this
way, capacity dimension is related to the support of semiuniform probabilities.

5 A Counterexample
Not all compact metric spaces are uniformizable. Nonuniformizability occurs
when a compact metric space concentrates its dimensionally significant geo-
metric structure on varying portions of the space for different ε-lattices as ε
goes to 0. In plainer English, as we view the space under “ε-magnification,”
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the geometry keeps shifting and concentrating at different places rather than
simply stabilizing as ε goes to 0.
To see what’s at stake, consider the following compact set K that is a subset

of the real interval [0, 2] in the usual (Euclidean) metric. To defineK, first define
a sequence of numbers εn (0 < εn < 1) that satisfy the following property:

1/εn+1 > 2
n(1/ε1 + · · ·+ 1/εn).

Now, construct K inductively as follows: Having constructed K for ε2m, add
to K the points {ε2m+1, 2ε2m+1, . . . ,Mε2m+1} whereMε2m+1 < ε2m but (M +
1)ε2m+1 > ε2m. Similarly, having constructed K for ε2m−1, add to K the points
{1 + ε2m, 1 + 2ε2m, . . . , 1 +Mε2m} where Mε2m < ε2m−1 but (M + 1)ε2m >
ε2m−1. Also include in K the points 0 and 1. Since K only has limit points 0
and 1, K is compact.
It follows immediately that for εn-lattices Sn on K, δS2m+1 =⇒ δ0 and

δS2m =⇒ δ1 asm ↑ ∞. In other words, for odd subscripted epsilons, the uniform
probabilities on the corresponding lattices converge weakly to the point mass
concentrated at 0, but for evenly subscripted epsilons, they converge to the
point mass concentrated at 1. Alternatively, δ0 and δ1 are both semiuniform
probabilities on K. Since these semiuniform probabilities are distinct, K cannot
be uniformizable (cf. section 3).

6 Examples
In concluding this paper, let us consider several concrete examples of uniformiz-
ability. For brevity, details are omitted. Moreover, Euclidean space and its
subspaces are assumed to be metrized with the usual metric.

1. Lebesgue measure on rectangles in Rn, Haar measure on a compact group,
and the measure on the Cantor set induced by the Cantor-Lebesgue sin-
gular function are straightforward examples of uniform probabilities.

2. {0} ∪ {n−1 : n = 1, . . . ,∞} has uniform probability concentrated at 0,
viz., δ0.

3. ({0} ∪ {±n−1 : n = 1, . . . ,∞}) ∪ ({1} ∪ {1 + n−1 : n = 1, . . . ,∞}) has
uniform probability µ = (2/3)δ0 + (1/3)δ1: there are three geometrically
equivalent sequences, two of which converge to 0, the other to 1. Observe
that µ does not agree with the uniform probability on {0, 1}, viz., ν =
(1/2)δ0 + (1/2)δ1. Thus, ν is not the conditional probability of µ on
{0, 1}. This does not contradict consistency of uniform probabilities (cf.
Proposition 2) since {0,1} is not µ-continuous: ∂{0, 1} = {0, 1} which has
µ-measure 1.

4. ({0} ∪ {n−1 : n = 1, . . . ,∞}) ∪ ({1} ∪ {1 + 2−n : n = 1, . . . ,∞}) has
uniform probability concentrated at 0: Cε({0} ∪ {n−1 : n = 1, . . . ,∞}) is
of the order ε−1/2 whereas Cε({1} ∪ {1 + 2−n : n = 1, . . . ,∞}) is of the
order log(1/ε). Hence Proposition 3 applies.
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5. Self-similar fractals tend to be uniformizable. For example the standard
Cantor set, the Sierpinski gasket, and the Koch curve are uniformizable
with the obvious measures (see Mandelbrot [10]).

6. Let (K, d) be a compact metric space and let T be a transformation of
K, i.e., T : K −→ K. For a point x0 ∈ K, let xn = Tnx0, Cn =
{x0, x1, . . . , xn}, and C = {xi : 0 ≤ i < ∞}. Frequently δCn converges
weakly to some measure µ (e.g., when T is ergodic with respect to an
invariant measure µ). µ is then supported on the closure of C. If C is
uniformizable, it is natural to ask how µ compares with its uniform proba-
bility (or with its semiuniform probabilities if C fails to be uniformizable).

Open Problem. For a domain in R2, harmonic measure is supported on a
set of Hausdorff dimension at most 1 (see Bourgain [11], where several relevant
results are collected together). How does harmonic measure in this case relate
to the (semi-) uniform probability on the boundary of the domain? For Julia
sets of Hausdorff dimension strictly greater than 1, one might expect harmonic
measure and (semi-) uniform probability to be singular with respect to one
another since (semi-) uniform probabilities are supported on sets of maximal
capacity dimension by Proposition 2 (Hausdorff and capacity dimension often
agree).
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