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1. Consistency as a Proscriptive Generalization
In 1926 Hermann Weyl’s Philosophy of Mathematics and Natural Science

appeared in Oldenbourg’s Handbuch der Philosophie. At the time Hilbert’s
formalist program to “eradicate via proof theory all the foundational
questions of mathematics” was in full swing. As a pupil of Hilbert, Weyl
was looking to the complete and ultimate success of Hilbert’s program, a
confidence evident in Weyl’s treatment of the foundations of mathematics
in the original version of Philosophy of Mathematics and Natural Science. But
in an appendix to that same text appearing twenty years later, Weyl
(1949, p. 219) admitted that this confidence was misplaced:

The aim of Hilbert’s “Beweistheorie” was, as he declared, “die
Grundlagenfragen einfürallemal aus der Welt zu schaffen” [i.e., the
aim of Hilbert’s “proof theory” was to “eradicate all the
foundational questions” of mathematics]. In 1926 there was
reason for the optimistic expectation that by a few years’
sustained effort he and his collaborators would succeed in
establishing consistency for the formal equivalent of our classical
mathematics. The first steps had been inspiring and promising
indeed. But such bright hopes were dashed by a discovery in 1931
due to Kurt Gödel, which questioned the whole program. Since
then the prevailing attitude has been one of resignation. The
ultimate foundations and the ultimate meaning of mathematics
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remain an open problem; we do not know in what direction it will
find its solution, nor even whether a final objective answer can be
expected at all....

Gödel showed that in Hilbert’s formalism, in fact in any
formal system M that is not too narrow, two strange things
happen: (1) One can point out arithmetic propositions Φ of
comparatively elementary nature that are evidently true yet
cannot be deduced within the formalism [Gödel’s first
theorem—the incompleteness theorem]. (2) The formula Ω that
expresses the consistency of M is itself not deducible within M
[Gödel’s second theorem]. More precisely, a deduction of Φ or Ω
within the formalism M would lead straight to a contradiction in
M.

Weyl’s assessment of mathematical foundations after Gödel is
perhaps too pessimistic. In particular, just how decisive Gödel’s theorems
are in overthrowing Hilbert’s program remains open to question. Gerhard
Gentzen’s (1936) proof of the consistency of arithmetic using transfinite
methods, though overstepping the finitary requirements of Hilbert’s
program, nevertheless shows that consistency can be proved if we are
willing to extend our methods of proof.1 More recently Michael Detlefsen
(1979) has argued that a finitistic interpretation of the universal
quantifier can lead to cases where consistency becomes provable—this
time as Hilbert would have it by finitary means (however, the resulting
finitistic proof theory is not a subsystem of the classical proof theory).

Although the epistemological significance of Gödel’s theorems is still a
matter of debate among philosophers, the practical effect of Gödel’s
theorems on the mathematical community is more easy to discern. On the
question of completeness, given a conjecture C and axioms B,
mathematicians admit the following possibilities:

(1) C is provable from B

(2) The negation of C is provable from B

(3) It can be proven that neither C nor its negation is provable
from B (C is provably undecidable, or if you will decidably
undecidable)

(4) It can’t be proven that neither C nor its negation is provable
from B (C is unprovably or undecidably undecidable)

Statement (4) involves the greatest admission of ignorance.
Statements (3) and (4) together are a far cry from Hilbert’s confident
rejoinder to DuBois-Reymond that “in mathematics there is no

                                                
1Extensions of Gentzen’s work on consistency can be found in Ackermann

(1940) and Takeuti (1955).
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ignorabimus.”2 Individual mathematicians have always recognized that
open mathematical problems might well lie beyond their mathematical
competence. In some cases the requisite mathematical machinery for
solving an open problem has had to wait millennia (cf. the role of Galois
theory in resolving such problems as squaring the circle and trisecting an
angle). Hilbert’s confidence, however, did not rest with the individual
mathematician, but with the nature of mathematics and with the scope
and power of mathematical proof. Hilbert had believed in the capacity of
proof to access any nook of mathematical ignorance. Gödel showed that
nooks exist from which proof is forever barred. Mathematicians
nowadays recognize that their research problems may not only be beyond
the scope of their ingenuity, but also beyond the scope of their
mathematical methods. This awareness can be credited to Gödel’s
incompleteness theorem.

Although incompleteness limits what mathematicians can prove, it in
no way destroys the mathematics they have to date proven. The same
cannot be said for inconsistency. Consider Weyl’s (1949, p. 20) comments
about consistency from the 1926 version of Philosophy of Mathematics and
Natural Science:

An axiom system must under all circumstances be free from
contradictions, in which case it is called consistent; that is to say, it
must be certain that logical inference will never lead from the
axioms to a proposition a while some other proof will yield the
opposite proposition ~a. If the axioms reflect the truth regarding
some field of objects, then, indeed, there can be no doubt as to
their consistency. But the facts do not always answer our
questions as unmistakably as might be desirable; a scientific
theory rarely provides a faithful rendition of the data but is
almost invariably a bold construction. Therefore the testing for
consistency is an important check; this task is laid into the
mathematician’s hands.

At the time Weyl was waiting for a demonstration of the consistency of
classical mathematics, a demonstration which was to depend on nothing
more than basic arithmetic. Basic arithmetic, the mathematics of the
successor operation, presumably the simplest of all mathematical
theories, was to ground the consistency of all of mathematics, including
basic arithmetic itself. Now whatever else we might want to say about

                                                
2“We hear within us the perpetual call. There is the problem. Seek its

solution. You can find it by pure reason, for in mathematics there is no
ignorabimus” (see Reid, 1986, p. 72). Hilbert was responding to Emil DuBois-
Reymond, who in the 19th century had vented his epistemological pessimism
with the watchword ignoramus et ignorabimus—we are ignorant and shal l
remain ignorant. Hilbert vehemently opposed this attitude.
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Gödel’s second theorem, it did show that basic arithmetic is inadequate
for demonstrating this consistency.

The need to go beyond this minimalist basis to demonstrate
consistency has therefore left mathematicians with less than deductive
certainty regarding the consistency of their mathematical theories.
Mathematicians are deductively certain that 2+2=4 inasmuch as they can
produce a deductive proof for this result (e.g., from the Peano axioms).
On the other hand, mathematicians have no deductive certainty that their
theories are consistent. Indeed, the typical mathematician will be hard
pressed to direct the earnest inquirer to a convincing proof of consistency
for his or her favorite mathematical theory.

The theorems of a mathematical theory concern questions internal to
the theory. Consistency, on the other hand, poses a question external to
the theory. To decide the consistency of a given mathematical theory T in
a way that is mathematically rigorous (and therefore leads to deductive
certainty), it is first necessary to embed T in an encompassing
mathematical framework U within which the consistency of T can be
coherently formulated. For any nontrivial theory T, however,
mathematicians lack a canonical method for first determining U and then
embedding T in U. Gödel’s second theorem provides one such embedding
(the one in which Hilbert had hoped to prove consistency, namely U =
basic arithmetic), but then demonstrates that this embedding is
inadequate for determining consistency.

Mathematicians are confident when they affirm or deny claims
internal to their theories since such claims either are axiomatic, or follow
by some logically acceptable consequence relation from the axioms. Their
confidence is the confidence people place in a properly working machine.
If the machine is at each step doing what it is supposed to do, its overall
functioning will presumably be satisfactory. So too in mathematics if both
background assumptions (= axioms) and consequence relation
(= inference rules) are uncontroverted, then the theorems and proofs that
issue from this machine will be uncontroverted as well. This is the beauty
of the formalist picture. To accommodate consistency within this picture
it is necessary to embed the machine we hope is consistent (i.e., our
original theory) in a bigger machine whose consistency we don’t question.
Gödel’s bigger machine was basic arithmetic. This machine was
inadequate for the task. Since then other machines have been proposed,
but none has gained universal acceptance.

Thus while mathematicians have mathematically compelling reasons
for accepting the theorems that make up their theories, they lack
mathematically compelling reasons for accepting the consistency of these
theories. How then do they justify attributing consistency to their
theories? Whence the confidence that mathematics is consistent, if this
confidence cannot be justified through mathematical demonstration?
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Weyl’s view of consistency still prevails, even if this fact is advertised
less now than in times past. Whether openly or tacitly, mathematicians
agree that a mathematical theory “must under all circumstances be free
from contradictions.” Indispensable to the success of mathematics is the
method of indirect proof—reductio ad absurdum. Given axioms B, a
conjecture C, and a contradiction that issues via a logically acceptable
consequence relation from B and ~C taken jointly, the method of indirect
proof allows us to conclude C. This method is so powerful that the
mathematical community is loath to give it up. In fact, whenever
constructivists try to limit the method of indirect proof, they are in
practice ignored. This is not to say that constructivists have nothing
interesting to say about the foundations of mathematics. But the working
mathematician whose living depends on proving “good theorems” simply
can’t afford to lose a prize tool for proving them.

Because reductio ad absurdum is a basic tool in the working
mathematician’s arsenal, a single contradiction is enough to ruin a
mathematical theory. The problem here is that the contradiction follows
from the axioms B alone—without the aid of conjectures like C which lie
outside B. In the previous example the contradiction arose by looking at
the consequences of B and ~C taken together. But this time the
contradiction arises from B itself (i.e., the very axioms which are
supposed to constitute the secure base for all our subsequent reasonings).
Since a contradiction springs from B itself, any C together with B entails a
contradiction. Hence by the method of indirect proof, an inconsistent
system proves everything and rules out nothing.

In the history of mathematics a notable example of such ruin occurred
when Frege learned of Russell’s paradox. As Frege (1985, p. 214) put it,

Hardly anything more unfortunate can befall a scientific writer
than to have one of the foundations of his edifice shaken after the
work is finished. This was the position I was placed in by a letter
of Mr. Bertrand Russell, just when the printing of this volume was
nearing its completion. It is a matter of my Axiom (V).

This remark appears in the appendix to volume II of Frege’s Grundgesetze
der Arithmetik. Russell’s paradox had demonstrated that inherent in
Frege’s system was a contradiction. The history of logicism subsequent to
Frege’s Grundgesetze can be viewed as an attempt to salvage the offending
Axiom (V).

Logicism sought to ground mathematics in self-evident logical
principles, thereby making mathematics a branch of logic. Axiom (V) was
supposed to be one such principle in the logical grounding of
mathematics. Nevertheless, Axiom (V) was responsible for a
contradiction. For logicism therefore to succeed, the logical legitimacy of
Axiom (V) had to be discredited. To mitigate the force of Russell’s
paradox Frege (1985, p. 214) therefore questioned the self-evidence of
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Axiom (V): “I have never disguised from myself its lack of the self-
evidence that belongs to the other axioms and that must properly be
demanded of a logical law.” Having finished the Grundgesetze only to
discover a contradiction, Frege confined himself to identifying and then
discrediting the offender responsible for the inconsistency. In the Principia
Mathematica Russell and Whitehead then took positive steps to salvage
Frege’s program. This they did by introducing their theory of types and
postulating an infinite number of individuals of lowest type. Using types
and actual infinities, Russell and Whitehead were able to accomplish the
work of Axiom (V) while at the same time preserving consistency.
Nevertheless, there was a cost. Indeed, they had to sacrifice the principal
claim of logicism—that mathematics is a branch of logic. Indeed, it has
never been clear that types and actual infinities are primitives of logic.3

The point to recognize in this historical digression is not so much that
mathematicians strive at all costs to save consistency, but rather that
they have a strategy for saving consistency, a strategy that hinges on the
method of indirect proof. An inconsistent mathematical system with
axioms B is as it stands worthless because by reductio ad absurdum it
entails everything. Nevertheless, since mathematicians have typically
devoted time and effort to the system, the usual strategy is to save as
much of the system as possible. The strategy is therefore to find as small
and insignificant part of B as possible which, if removed, restores
consistency: prune B down to B′ and call the leftovers C. The hope is that
B′ does not lead to a contradiction. Still to be preferred is that a
supplement C′ be found to B′ which plays the same role as C, but without
introducing the inconsistency for which C is held responsible. Since B′ and
C together (= B) lead to a contradiction, C becomes the offender guilty of
producing the contradiction inherent in B. Note that this strategy for
saving consistency underdetermines the choice of C and C′: B can
typically be pruned and supplemented in various ways to save
consistency. In line with our previous example, Frege identified the
offending C with Axiom (V) whereas Russell and Whitehead offered their
theory of types as the preferred supplement C′.

The readiness of mathematicians to employ the foregoing strategy to
save consistency supports Weyl’s claim that “an axiom system must
under all circumstances be free from contradictions.” Nevertheless,
inherent in this strategy is the disturbing possibility that pruning and
                                                

3As William and Martha Kneale (1988, p. 683) observe in their exhaustive
history of logic, “In Principia Mathematica  the axioms are all supposed to be
necessary truths.... Admittedly Russell has misgivings about his axiom of
reducibility and his axiom of infinity, but he still thinks that if they are to be
accepted at all they are to be accepted as [necessary] truths, and he therefore
puts forward such considerations as he can produce to convince the reader or a t
least make him sympathetic.”
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salvaging might continue interminably because of an unending chain of
contradictions. The worst case scenario has B leading to a contradiction,
requiring that B be reduced to a proper subset B′, which after some time
in turn leads to a contradiction, requiring that it be reduced to a proper
subset B″.... This process might continue until nothing is left of the original
B. One way to avert this possibility is to produce a consistency proof of
the type Hilbert was seeking. Yet even if Gödel’s second theorem doesn’t
demonstrate that the search for such a consistency proof is vain, the lack
of a universally recognized consistency proof leaves open the possibility
that mathematics is a hydra which, however many contradictions we lop
off, will never cease to sprout further contradictions.

How then can we account for the conviction in the mathematical
community that certain well-established portions of mathematics, like
Euclidean geometry and number theory, are consistent? Mathematicians
may, pace Gödel, leave open the possibility that Euclidean geometry and
number theory are inconsistent. But their confidence that these theories
won’t sprout contradictions is analogous to the lay person’s confidence
that the sun will rise tomorrow. The lay person’s confidence rests on an
induction from past experience (supplemented perhaps by theoretical
support from the lay person’s physical understanding of the world).
Similarly, I would claim, the mathematician’s confidence in consistency
rests on an induction from mathematical experience.

Weyl himself was aware that this type of induction goes on within
mathematics. In describing the axiom of parallels from Euclidean
geometry, Weyl (1949, p. 21) noted

From the beginning, even in antiquity, it was felt that [the axiom of
parallels] was not as intuitively evident as the remaining axioms
of geometry. Attempts were made through the centuries to secure
its standing by deducing it from the others. Thus doubt of its
actual validity and the desire to overcome that doubt were the
driving motives. The fact that all these efforts were in vain could
be looked upon as a kind of inductive argument [N.B.] in favor of
the independence of the axiom of parallels, just as the failure to
construct a perpetuum mobile is an inductive argument for the
validity of the energy principle.

The continued efforts of mathematicians to derive the axiom of parallels
from the remaining axioms of Euclidean geometry supported the claim
that this axiom is in fact underivable from the remaining axioms. Of
course, interest in such inductive support evaporated with the discovery
of non-Euclidean geometries—here then finally was a proof that the
axiom of parallels is underivable from the remaining axioms.

Now it must be said that in general mathematical arguments are not
arguments from ignorance. The inability of one or even several
mathematicians to establish a result does not mean that the result is
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impossible to establish. Nevertheless, the inability of the mathematical
community as a whole even to make progress on, much less establish, a
given result over an extended period of time can lead to a conviction
within the mathematical community that the result is impossible to
establish. It is worth noting how often this conviction has in the end been
justified deductively. The problems of trisecting an angle and squaring a
circle date back to antiquity. Their “solution” in the last century (through
the work of Galois and his theory of groups) simply confirmed the vain
efforts of previous generations, namely that with ruler and compass these
problems are insoluble. In this light, confidence in the consistency of
Euclidean geometry, number theory, and other well-established
mathematical theories can be viewed as the failure of the mathematical
community to discover a contradiction from these theories—despite
sustained and arduous efforts to discover such a contradiction. In fact,
what makes these theories well-established is precisely this failure
despite sustained effort (what Weyl calls “the fact that all these efforts
were in vain”).

Arend Heyting picks up this train of thought in his book Intuitionism.
There he presents a delightful dialogue in which proponents of various
philosophical positions on the nature of mathematics argue their views. In
this dialogue Heyting places the pragmatic view of consistency I am
describing in the mouth of an interlocutor named Letter. Letter advocates
a philosophy of mathematics nowadays referred to derisively as “if-
thenism”: “Mathematics is quite a simple thing. I define some signs and I
give some rules for combining them; that is all” (Heyting, 1971, p. 7).
Among current philosophers of mathematics if-thenism is rightly rejected
as too incomplete and simplistic an account of mathematics. If-thenism
simply leaves too many questions unanswered, in particular the initial
choice of axioms and the indispensability of mathematics for the natural
sciences (see Maddy, 1990, p. 25). Nevertheless, when the interlocutor
known as Form (= the Hilbertian formalist) demands “some modes of
reasoning to prove the consistency of your formal system,” Letter’s
response, particularly in light of Gödel’s second theorem, seems entirely
appropriate (Heyting 1971, p. 7):

Why should I want to prove [consistency]? You must not forget
that our formal systems are constructed with the aim towards
applications and that in general they prove useful; this fact would
be difficult to explain if every formula were deducible in them.
Thereby we get a practical conviction of consistency which
suffices for our work.

Whence this practical conviction of consistency? In our mathematical
exertions we continually try to deduce contradictions. Reductio ad
absurdum is a mathematician’s stock in trade. To prove C from axioms B,
it is enough to derive a contradiction from ~C and B. In trying to derive a
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contradiction from both B and some auxiliary hypothesis ~C, however,
mathematicians are a fortiori trying to derive a contradiction from B
itself. Hence mathematicians are ever checking for contradictions inherent
in B. In claiming consistency for the mathematical theory entailed by B,
mathematicians are therefore making an induction similar to one
practiced by natural scientists.

What sort of induction is this? Corresponding to any inductive
generalization is what can be called a proscriptive generalization.4

Moreover, corresponding to the inductive support for an inductive
generalization is what can be called proscriptive support for the
proscriptive generalization. A celebrated example of an inductive
generalization concludes from the observational claim “all observed
ravens have been black” to the general claim “all ravens are indeed
black.” These two claims, however, are respectively equivalent to “no
observed ravens have been non-black” and “no ravens are non-black.”
Now the move from “no observed ravens have been non-black” to “no
ravens are non-black” can be viewed as proscriptive support for a
proscriptive generalization, the proscriptive support being that no
observed ravens have been non-black and the proscriptive generalization
being that no ravens whatsoever are non-black.

Now within mathematics this sort of move from proscriptive support
to proscriptive generalization occurs all the time when the consistency of
a mathematical theory is in question: from “no contradiction has to date
been derived from B” (the proscriptive support) mathematicians conclude
that “no contradiction is in fact derivable from B” (the proscriptive
generalization). Just as the grounds for concluding that no ravens are non-
black is the failure in practice to discover a non-black raven, so the
grounds for concluding that no contradiction can be derived from B is the
failure in practice to discover a contradiction from B.

Now the failure in practice to discover a thing may or may not
provide a good reason for doubting the thing’s existence. Consider the
familiar god-of-the-gaps objection to miracles. Some strange phenomenon
M is observed (“M” for miracle). A search is conducted to discover a
scientifically acceptable explanation for M. The search fails. Conclusion:
no scientifically acceptable explanation exists, and what’s more God did
it. There is a problem here. As physicist and philosopher of religion Ian
Barbour (1966, p. 390) aptly notes,

We would submit that it is scientifically stultifying to say of any
puzzling phenomenon that it is “incapable of scientific
explanation,” for such an attitude would undercut the motivation
for inquiry. And such an approach is also theologically dubious, for
it leads to another form of the “God of the gaps,” the deus ex

                                                
4I owe this phrase to Steve Meyer.
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machina introduced to cover ignorance of what may later be shown
to have natural causes.

Or as C. A. Coulson (1955, p. 2) puts it, “When we come to the
scientifically unknown, our correct policy is not to rejoice because we
have found God; it is to become better scientists.”

Barbour and Coulson are right to block lazy appeals to God within
scientific explanation. The question remains, however, how long are we to
continue a search before we have a right to give up the search and declare
not only that continuing the search is vain, but also that the very object of
the search is non-existent? The case of AIDS suggests that certain
searches must never be given up. The discovery of the cause of AIDS in
HIV has proved far easier than finding a cure. Yet even if the cure
continues to elude us for as long as the human race endures, I trust the
search will not be given up. There is of course an ethical dimension here as
well—certain searches must be continued even if the chances of success
seem dismal.

There are times that searches must be continued against extreme
odds. There are other times when searches are best given up. Despite
Poseidon’s wrath, Odysseus was right to continue seeking Ithaca.
Sisyphus, on the other hand, should long ago have given up trying to roll
the rock up the hill. We no longer look kindly on angle trisectors and circle
squarers. We are amused by purported perpetuum mobile devices. We
deny the existence of unicorns, gnomes, and fairy godmothers. In these
cases we don’t just say that the search for these objects is vain; we
positively deny that the objects exist.

I don’t have a precise line of demarcation for deciding when a search
is to be given up and when the object of a search is to be denied existence.
Nevertheless, I can offer a necessary condition. The failure in practice to
discover a thing is good reason to doubt the thing’s existence only if a
diligent search for the thing has been performed. If I am to be convinced
on the basis of observational evidence that no ravens are non-black, I
must first be convinced that a diligent search for a non-black raven has
been conducted. If ravens can conceivably be found in a trillion different
places and if only a small fraction of those places can, given our
resources, be examined, I should still want to see full use made of those
limited resources. What’s more, I should want to see those resources used
to obtain as representative a sample of ravens as possible (e.g., our
search for non-black ravens should not be confined to just one locale). A
full and efficient use of our resources for discovery should be made before
we accept a proscriptive generalization.

If all our efforts to discover a thing have to date been in vain, then our
practical conviction that the thing doesn’t exist is proportional to how
much (seemingly wasted) effort has been expended to discover the thing.
This is one way of characterizing proscriptive generalizations, though in
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the natural sciences this type of induction is usually described in the
language of confirmation. Unfortunately, in mathematics claims about
practical conviction tend to get short shrift. The mathematical community
is so used to operating by analytic standards of rigor and proof that
inductive justifications of mathematical claims are typically regarded as
no more than precursors to precise analytic demonstrations.5 Thus even
though the collective experience of mathematicians for two thousand
years supported the independence of the axiom of parallels from the
remaining axioms of Euclid, only when Bolyai and Lobachevsky
produced their non-Euclidean geometries were mathematicians satisfied.

This attitude of mathematicians to prefer analytic demonstration over
inductive justification is generally healthy. For a mathematical claim,
analytic demonstration is always a firmer support than inductive
justification. In this light Hilbert’s program can be seen as the grand
endeavor to assimilate all of mathematics to analytic demonstration—a
worthy goal if feasible. In this way analytic demonstration would always
have supplanted inductive justification. Gödel’s theorems, however,
rendered Hilbert’s program doubtful and in the process left open the need
for inductive justification within mathematics.

What happens when our analytic methods continually fail to produce
a given result? When a mathematical research program is just beginning,
mathematicians often share practical convictions about claims they hope
will eventually be decided analytically through their program. Thus as
Weyl might put it, mathematicians come into the research program
looking at past efforts as supplying “a kind of inductive argument” for
claims they want later to prove rigorously. Inductive arguments, however,
are second class citizens in the mathematical hierarchy of justification.
Weyl’s reference to inductive argument in mathematics was made at a
time when Hilbert’s program still seemed promising. Inductive arguments
for consistency and independence of certain axioms were therefore
pointers to the rigorous demonstrations which Hilbert’s program was to
produce. As Hilbert’s program ran out of steam, however, it became
apparent that rigorous demonstrations for claims previously supported
only by inductive justifications would not be forthcoming, at least not
from the program. What was left was only the original, inductive
justification.

The precise relation between analytic demonstration and inductive
justification is therefore an open problem. The history of mathematics
confirms that inductive justifications (Weyl’s “kinds of inductive
argument”) have always played an important role in mathematics.

                                                
5This attitude is now changing because of the computer and the

proliferation of problems in the physical sciences which admit no exact
mathematical solution.
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Moreover, when mathematical programs have sought to eliminate
inductive justifications by superseding them with analytic proofs, they
have not always been successful. In fact, I submit that the history of
mathematics supplies ample evidence for the ineliminability of inductive
considerations from the actual content of mathematics.

Earlier I claimed that our practical conviction that a thing doesn’t
exist is proportional to how much (seemingly wasted) effort has been
expended to discover the thing. Let me now tailor that claim to
mathematics: Apart from a precise analytic demonstration, our practical
conviction toward a mathematical claim is proportional to how much
effort mathematicians have expended trying to decide the claim.
Mathematicians expend effort whenever they deduce consequences from
background assumptions. The if-thenist picture of the mathematician
cranking away at an inference engine is therefore the correct picture of
what I’m calling effort. Note that this is an empirical picture. The
observations and experiments which make up the picture are deductive
arguments—chains of reasonings issuing from background assumptions
and proceeding according to a logically acceptable consequence relation.
The data comprise everything from student problem sets to the articles in
mathematical journals to computer simulations. Within this picture a
mathematical theory can be empirically adequate only if no expenditure
of effort has to date discovered an inconsistency.

Lacking as they do analytic demonstrations for the consistency of
their mathematical theories, mathematicians accept the consistency of
their theories out of a practical conviction that springs from their
persistent failed efforts to discover a contradiction. The type of induction
responsible for this pragmatic conviction is nothing new to
mathematicians. After repeated failures at trying to solve a problem,
mathematicians come to believe that the failure is in the nature of the
problem and not in their competence. Then the search is on to provide an
analytic demonstration that the problem has no solution. Yet this search
can fail as well. Repeated failure here then yields the practical conviction
that the problem has no solution—despite the absence of strict analytic
proofs. The point to realize is that in circumstances where no analytic
resolution is in fact possible, practical convictions of this sort are all that
remain to the mathematician. The history of mathematics simply does not
support the hope that practical conviction can always be turned into
mathematical certainty by means of analytic proof.

Commenting on failed attempts to prove the axiom of parallels from
the other axioms of Euclid’s geometry, Weyl (1949, p. 21) writes, “The
fact that all these efforts were in vain could be looked upon as a kind of
inductive argument in favor of the independence of the axiom of
parallels.” The independence of the axiom of parallels was in the end
provable, so that all the failed efforts over thousands of years to
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disprove independence could at length be disregarded. However, in
instances where not only “all these efforts were in vain,” but also no strict
demonstration is forthcoming, mathematicians can frequently do better
than simply admit the continued failure of their efforts to establish a
claim. Having made this admission, they can advance a proscriptive
generalization whose support is precisely this “vain” expenditure of
effort.

2. Conjecture Conditionals
I want next to consider a class of conditionals which has only recently

gained the attention of the mathematics and computer science
communities, a class I’ll refer to as conjecture conditionals.6 These are
conditionals whose antecedents are conjectures and whose consequents
are computational results. The problem with conjectures is, of course, that
they might be false. The beauty of computational results, on the other
hand, is that they have immediate, straightforward applications. Such
conditionals introduce an intriguing tension between uncertain
antecedents and readily applicable consequents. Mathematicians exploit
this tension by adopting an attitude toward these conditionals for which
the usual logical modes of analysis, viz., truth and proof, frankly fail to
give an account.

The conjecture conditionals that will interest us most have a famous
conjecture in the antecedent, and therefore assume the following form:

FAMOUS CONJECTURE → COMPUTATIONAL RESULT

For our purposes it is useful that the conjecture be famous, since this
guarantees that considerable effort (for now taken intuitively) has already
been expended trying to decide its truth. Moreover, since it still is a
conjecture, all this effort has till now been expended in vain. For
concreteness, let me state one such conditional as it appears in the
mathematical literature:

If the Extended Riemann Hypothesis is true, then there is a
positive constant C such that for any odd integer n > 1, n is prime
just in case for all a ∈  Zn

*
 satisfying a < C⋅ (log n)2,

a(n– 1)/2 ≡ (a|n) modn.7

                                                
6I owe this phrase to Mark Wilson.
7This is a slightly modified version of Theorem 2.18 in Kranakis (1986, p.

57). This theorem is significant to computational number theorists for its
relation to the Solovay-Strassen deterministic test for primality, a result
useful among other things in cryptography.
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This conditional is a theorem of computational number theory. Let us
represent it more compactly as

RH→C

where RH denotes the Extended Riemann Hypothesis, and C the
computational result stated in the consequent. Let me stress that for our
purposes the precise statement of RH is unimportant. What is important
is that RH→C is a conditional whose antecedent is a conjecture (a claim
whose truth or falsehood has yet to be established and may in fact never
be established) and whose consequent is a computational result having
straightforward applications.

Now at the level of truth and proof it is difficult to make sense out of
conditionals like RH→C in a way that satisfies philosopher and
mathematician alike. The ordinary logic of truth and proof issues in an
analysis of conditionals which, for convenience, we’ll call the orthodox
analysis. According to the orthodox analysis conditionals are material
conditionals and therefore logically equivalent to disjunctions. Now,
because RH→C is a theorem, according to the orthodox analysis we know
that at least one of ~RH and C is true. Yet because RH is a conjecture, we
have no idea which is true. Thus, the orthodox analysis asks us to rest
content with a proven disjunction (~RH ∨  C) whose disjuncts both
remain unproven.

As far as it goes, the orthodox analysis is unobjectionable.
Unfortunately, for RH→C the analysis doesn’t get us very far. In
particular, the orthodox analysis fails to account for how computational
number theorists actually use conditionals like RH→C in practice.
Computational number theorists are not content to analyze conditionals
like RH→C by replacing them with their logically equivalent disjunctions
(in this case ~RH ∨  C), looking up the truth table that applies to the
disjunction, and thereafter resting easy with the knowledge that at least
one of the disjuncts is true (which one is true we don’t know since RH is a
conjecture). Instead, computational number theorists take the bold step of
accepting C as provisionally true—even though the actual truth of C
remains strictly speaking a matter of ignorance.

To justify this move computational number theorists offer the
following line of reasoning (let me stress that I’m not making this up; I’ve
witnessed this line of reasoning first-hand among computational number
theorists): “I don’t know whether the famous conjecture is true or false.
But that doesn’t matter. If it’s true, I can use the computational result to
my heart’s content and never get in trouble. If it’s false, the worst that can
happen is that I apply the computational result and obtain an error. But
what a precious error! As a counterexample to the computational result,
this error will demonstrate that the famous conjecture is false. I’ll be
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world-famous, having resolved a celebrated open problem.”8 Let me put
it this way: either your computation goes through without a snag, or your
computation goes awry and you become world-famous, having
unintentionally resolved an outstanding open problem.9 Fame, if you will,
by modus tollens.

RH is a famous conjecture in part because the best mathematicians
have racked their brains trying to solve it—to date without success. A
great deal of effort has been expended trying to prove or disprove RH.
On the other hand, to show that the computational result C follows from
RH is easy, requiring little effort (the proof is about five lines).
Mathematicians therefore feel justified in freely applying the
computational result since any single computation will require little effort
and therefore seems unlikely to resolve a famous conjecture on which so
much effort has already been expended. It is a question of effort: much
effort in trying to decide the conjecture without success, little effort in
establishing the computational result from the conjecture, and little effort
in applying the computational result in practice.

Computational number theorists understand RH→C not ultimately in
terms of truth and proof, but in terms of effort relations that give a
pragmatic justification for freely using the consequent C. Indeed, as soon
as a conjecture conditional like RH→C becomes a demonstrated
mathematical theorem, C gains independence from the conjecture RH that
entails it, and becomes a computationally useful stand-alone result. On
the orthodox analysis, the logical status of C remains as uncertain as
ever. Yet from the point of view of effort, C has gained substantial
pragmatic support.

My use of effort here has been a bit loose, but I think the general point
is clear enough.10 What is perhaps not so clear, however, is whether I am
fairly representing the ideal mathematician—the sincere seeker after
mathematical truth. Perhaps I’m merely representing the opportunistic
mathematician, the vain seeker after self who thinks the worst that can
happen if you accept the consequences of a famous unproven conjecture
is that you refute the conjecture and become world-famous. Perhaps the
worst-case scenario is really this: you accept the consequences of a

                                                
8Jeff Shallit’s course in computational number theory at the University of

Chicago, winter 1988, was my first exposure to this mode of justifying conjecture
conditionals.

9Sandy Zabell put it best: “You should be so lucky!”
10A precise account of effort can be developed in terms of computational

complexity. See Krajicek and Pudlak (1989).
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famous conjecture that is itself false, but that you cannot prove to be
false, and so you wind up with a lot of false beliefs.11

Even if I’ve painted an accurate picture of how the mathematical
community handles conjecture conditionals, the philosopher has every
right to wonder whether the mathematical community is correct in its
handling of conjecture conditionals. It seems to me that what concerns the
philosopher most about the mathematician’s cavalier attitude toward
conjecture conditionals centers on the risk that mathematicians assume
when they accept the consequences of a famous conjecture. The risk is
real, since accepting the consequences of a famous conjecture does indeed
make one vulnerable to winding up with a lot of false beliefs. Because the
picture of mathematics as a haven for deductive certainty is so
entrenched, it is hard to imagine mathematics harboring uncertainties, not
just about its future progress, but about its present state. The fact is,
however, that mathematicians assume such risks all the time.

Indeed, the mathematical community as a whole risks the consistency
of mathematics on conjectures known as axioms. The working
mathematician accepts the consistency of a mathematical theory as a
provisional truth. As we saw in section 1, no mathematical system can
bear the strain of a contradiction—hence the backpedaling and reshuffling
of axioms whenever an inconsistency is found. It’s possible that a well-
established mathematical theory is inconsistent. So too, it’s possible that
C is false. But to trouble oneself over accepting potentially false
mathematical beliefs that serve us well, that require more effort than we
are able now or perhaps ever to expend on deciding their truth, that are
consequences of conjectures whose solution is nowhere in sight; and then
to pretend that the entire edifice into which these individual beliefs are
embedded is secure, an edifice which is always threatened by the
possibility of contradiction strikes me as hypocritical.

If RH should at some point be refuted, our acceptance of C would
change. Similarly, if a mathematical theory should at some point lead to a
contradiction, our acceptance of the relevant axioms would change. The
latter change is certainly more far-reaching than the former, but both are
changes of the same kind. History bears this out: when the axioms of
mathematics lead to a contradiction, they are either adjusted or
discarded to avoid the contradiction. In section 1 we considered Frege’s
response to Russell’s paradox as a case in point. Frege’s Axiom (V) led to
a contradiction and therefore had to be trashed. Riemann’s celebrated
conjecture, on the other hand, has yet to issue in a contradiction.

                                                
11Note that this objection presupposes precisely what’s at issue in this

discussion, namely, whether mathematical knowledge is limited to what is
true and provable. It is precisely this point that I’m challenging.
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At the level of truth and proof we have no warrant for accepting the
consequences of a famous conjecture or the consistency of a mathematical
theory. At this level the best we can do is wait for a contradiction. Thus
at the level of truth and proof we are in the uncomfortable position of
being unable to reject C or consistency until it is too late, i.e., until the
conjecture RH or the axioms of the relevant mathematical theory are
known to have issued in a contradiction. At the level of effort, on the
other hand, there can be plenty of warrant for accepting both C and the
consistency of a mathematical theory. Both beliefs are confirmed by an
expenditure of effort; moreover, the degree of confirmation depends on
the amount of effort expended. C is entailed by the conjecture RH on
which much effort has been expended trying to decide it—as yet to no
avail. A mathematical theory comprises what consequences have to date
been deduced from its axioms, axioms on which even more effort has
been invested to deduce a contradiction—again, to no avail.

Of course mathematicians don’t view themselves as consciously trying
to find contradictions in their mathematical theories. But since reductio
ad absurdum is basic to the working mathematician’s arsenal, plenty of
occasions arise for proving contradictions. Mathematicians are therefore
ever on the alert for contradictions that might arise from the axioms of
their theories. For this reason I have no qualms saying that
mathematicians have invested even more effort trying to decide the
consistency of their mathematical theories than trying to decide RH. The
computational number theorist’s confidence in C and the mathematician’s
confidence in consistency are parallel beliefs whose degree of
confirmation in both instances is proportional to the effort expended
trying to decide those beliefs. Expended effort is capable of confirming
mathematical beliefs that cannot be confirmed via strict proof.

A final objection to accepting the consequences of a famous conjecture
needs now to be addressed. The problem of deciding RH is the problem
of either proving or disproving RH, that is to say, either proving RH or
proving ~RH. It therefore follows that deciding RH and deciding ~RH are
one and the same problem. Hence the effort expended trying to decide a
conjecture like RH is identical with the effort expended trying to decide
its negation ~RH. The question therefore arises, why merely accept the
computational results that are deductive consequences of RH? Why not
accept the computational results that are deductive consequences of ~RH
as well? I have urged accepting C because RH is a conjecture with much
effort expended on it, and because RH→C is an easily proved theorem.
But ~RH is just as much a conjecture, with just as much effort expended
on it as RH. Why not accept a computational result D as provisionally
true whenever ~RH→D is a theorem?
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As a thoroughgoing pragmatist I would say, Go right ahead. If D runs
afoul, you’ll get a Field’s Medal12 for having demonstrated that RH is
true; if C runs afoul, you’ll get a Field’s Medal for having demonstrated
that RH is false. In either case you’ll be world-famous, having resolved
the Riemann Hypothesis. Yet the more likely scenario is that neither C nor
D will run afoul when you run the computations, and that the Field’s
Medal will continue to elude you.

Since this pragmatic line is likely to offend more traditional
sensibilities, let me offer an alternative line. When confronted with
opposite conjectures like RH and ~RH, mathematicians invariably make a
choice, though a choice that depends neither on truth, nor proof, nor
effort. The sort of choice I have in mind comes up frequently in set theory.
It often happens that set theorists want to add some additional axiom to
their theory of sets. Such axioms typically serve either to proscribe certain
pathological sets (cf. the axiom of foundation) or to guarantee the
existence of certain desired sets (cf. the axioms having to do with large
cardinals). Before adding a new axiom A to the old axioms for set theory,
however, it is desirable to know two things: (1) that A is consistent with
the old axioms; (2) that ~A is consistent with the old axioms. The former
guarantees that adding A won’t ruin our theory of sets, the latter that
adding A won’t be redundant. In case (1) and (2) hold, we say that A is
independent of our original axioms. Of course independence is a
symmetric notion, and hence ~A will be independent of our original
axioms as well. Any choice that favors A over ~A, or vice versa, is
therefore dictated by considerations other than consistency. In practice
the choice is made by looking to such things as simplicity, beauty,
fruitfulness, interest, and purposes at hand (see Maddy, 1990, ch. 4).

Now it may happen that neither A nor ~A can be proved from the
original axioms, and that the independence of A from the original axioms
cannot be proved either. Thus despite a vast expenditure of effort, the
logical status of A might remain completely indeterminate. In this case,
considerations of simplicity, beauty, fruitfulness, interest, and purposes
at hand must again be invoked to elicit a choice. Often mathematicians
have strong preferences. Often they would like things to be a certain way.
And barring any compelling reasons to the contrary, they are willing, at
least provisionally, to accept that things are that way. Now RH is a much
nicer hypothesis than ~RH. RH says that the zeros of a certain class of
analytic functions fall in a certain neat region of the complex plane. ~RH
says that they also fall outside that neat region. Presumably it is this nice
property of RH that is responsible for RH having interesting

                                                
12The Field’s Medal is the highest honor the international mathematics

community bestows on its members. This is the Nobel Prize of mathematics.
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computational consequences like C. ~RH, on the other hand, has no
interesting computational consequences that I am aware of.

For reasons then that ultimately have nothing to do with either truth
or proof or effort, given a choice mathematicians prefer RH over ~RH.
Nevertheless, effort is a precondition for this choice being possible:
without all that “wasted” effort expended in trying to decide RH, we
might suspect that RH or its negation has a simple proof. Having
“wasted” this effort, mathematicians feel justified investing the
computational consequences of RH with a certain confidence. If they were
inclined, mathematicians could invoke effort and invest the
computational consequences of ~RH with the same confidence. But for
reasons extrinsic to both logic and complexity (truth and proof being
logical notions, effort being a complexity-theoretic notion), mathema-
ticians prefer RH. Hence even though effort by itself confers equal weight
to the computational consequences of both RH and ~RH, factors outside
logic and complexity favor RH, inducing mathematicians to accept its
computational consequences, while neglecting those of ~RH.

3. Effort and the Possibility of
Mathematical Knowledge

So long as one is not a complete skeptic about mathematical
knowledge, one can ask a Kantian question: What are the conditions for
the possibility that mathematical knowledge exists? More simply, How is
mathematical knowledge possible? Now, while this question may be very
Kantian in form, my aim in asking it is very far from Kantian in spirit. I
am not, for instance, interested in exploring those properties of the
intuition and understanding that make mathematical knowledge possible.
This is not to suggest that the properties of the intellect aren’t important
to the question I’m asking. In raising this question, however, I am
motivated by pragmatic rather than theoretical concerns.

In exploring the possibility of mathematical knowledge, what interests
me is the knowledge that human mathematicians are actually capable of
attaining given the limited resources available to them for attaining such
knowledge. This sort of practically attainable mathematical knowledge
needs for this discussion to be distinguished from the strictly in-principle
mathematical knowledge that may perhaps exist in some Platonic sense,
but as a practical matter is beyond our ken. My interest is with the
former, practical sense of possibility rather than the latter, theoretical
sense of possibility. For this reason it will come as no surprise that I’m
going to unpack practical possibility in terms of the effort mathematicians
expend in trying to prove things.
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Let me start by noting that the connection between effort and
practical possibility is neither new nor artificial. Richard von Mises, for
instance, used effort to distinguish degrees of possibility:

Ordinary language recognizes different degrees of possibility or
realizability. An event may be called possible or impossible, but it
can also be called quite possible or barely possible according to
the amount of effort that must be expended to bring it about. It is
only “barely possible” to write longhand at 40 words per minute;
impossible at 120. Nevertheless it is “quite possible” to do this
using a typewriter.... In this sense we call two events equally
possible if the same effort is required to produce each of them.13

Two features stand out in the way von Mises relates effort and
possibility. The first is their inverse proportion: the more effort is needed
or must be expended to bring about a state of affairs, the less possible is
that state of affairs. The second is that the effort required to obtain a
state of affairs varies with the resources at hand: typewriters make for
faster longhand than pens alone.

Bradley and Swartz (1979, pp. 147–149) make much the same point,
only this time with reference specifically to mathematical knowledge and
its limitation:

There are ... some propositions the knowledge of whose truth,
if it is humanly possible at all, can be acquired only by an
enormous investment in inferential reasoning [cf. expenditure of
effort]. The proofs of many theorems in formal logic and pure
mathematics certainly call for a great deal more than simple
analytical understanding of the concepts involved. And in some
cases the amount of investment in analysis and inference that
seems to be called for, in order that we should know whether a
proposition is true or false, may turn out to be entirely beyond the
intellectual resources of mere human beings.

As a case in point consider the famous, but as yet unproved,
proposition of arithmetic known as Goldbach’s Conjecture, viz.,
Every even number greater than two is the sum of two primes....
Goldbach’s Conjecture is easily understood. In fact we understand
it well enough to be able to test it on the first few of an infinite
number of cases.... [But] for all we know, it may turn out to be
unprovable by any being having the capacities for knowledge-
acquisition which we human beings have. Of course, we do not
now know whether or not it will eventually succumb to our
attempts to prove it. Maybe it will. In this case it will be known
ratiocinatively. But then, again, maybe it will not. In that case it
may well be one of those propositions whose truth is not known

                                                
13As quoted in Hacking (1975, p. 123)—the italics are mine. See von Mises

(1957, p. 67) for a slightly different translation.
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because its truth in unknowable. At present we simply do not know
which.

The “enormous investment in inferential reasoning,” the “intellectual
resources of mere human beings,” and “the capacities for knowledge-
acquisition which we human beings have” can all be unpacked in terms of
the effort mathematicians expend in proving things. An infinitely
powerful problem solver is able to settle the Goldbach Conjecture, either
by providing a counterexample (i.e., an even integer greater than 2 that is
not the sum of two primes), or by running through all the even integers
greater than 2 and in each case finding a pair of primes which sums to it
(this is of course a brute force approach, unlikely to win prizes for
elegance; but then again this is the virtue of an infinitely powerful problem
solver—the ability to solve everything by albeit inelegant means). Once
the problem solver is limited, however, the question about resources and
their optimal use cannot be avoided. Mathematical propositions are
widely held to be non-contingent, being either necessarily true or false.
Nevertheless, the capacity of rational agents to establish propositions is
contingent, depending on their resources for establishing propositions.
This capacity, or alternatively this practical possibility of attaining
mathematical knowledge, seems therefore inextricably tied to the
complexity of the problem under consideration and the effort that is
available and can be expended to try to solve it.

Is this a deep insight or a mere tautology? If to accomplish task B I
need resources A, then for B to be a practical possibility A must be
available. Unpacking practical possibility in terms of effort appears
therefore something of a tautology. Yet if it is a tautology, it is one that
nevertheless does some philosophical work, pointing up certain limits to
mathematical knowledge. Take for instance Wittgenstein’s ideas about
the perspicuity and surveyability of mathematical proof. In his remarks
on the foundations of mathematics Wittgenstein (1983, p. 144) considers
the problem of truth-preserving correspondences between alternate ways
of representing numbers:

Now let us imagine the cardinal numbers explained as 1, 1+1,
(1+1)+1, ((1+1)+1)+1, and so on. You say that the definitions
introducing the figures of the decimal system are a mere matter of
convenience; the calculation 703000 x 40000101 could be done in
that wearisome notation too. But is that true?—“Of course it’s
true! I can surely write down, construct, a calculation in that
notation corresponding to the calculation in the decimal
notation.”—But how do I know that it corresponds to it?

Wittgenstein is pessimistic about our capacity to demonstrate the
correspondence between 703000 x 40000101 and its unary form. The
problem for him (1983, p. 145) is perspicuity: “One cannot command a
clear view of it.”
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My position is that this correspondence is perspicuous just in case the
effort that must be expended to demonstrate the correspondence (i.e., to
translate faithfully from one notation to the other) is available.
Wittgenstein’s intuitions are therefore on the mark: he uses big numbers to
probe the perspicuity question for it is calculations with big numbers,
rather than small numbers, that test the limits of our computational
resources and thus determine the effort needed to carry out these
calculations. Hence, right after the preceding passage Wittgenstein (1983,
p. 145) invokes big numbers again:

Now I ask: could we also find out the truth of the proposition
7034174 + 6594321 = 13628495 by means of a proof carried out
in the first notation [i.e., the unary notation]?—Is there such a
proof of this proposition?—The answer is: no.

But what if we take a different tack and invoke small numbers
instead of big numbers? “Could we also find out the truth of the
proposition” 2 + 2 = 4 “by means of the proof carried out in the first
notation”? The answer is of course yes: (1+1) + (1+1) = ((1+1)+1)+1. A
problem of demarcation therefore confronts us: Where do we draw the
line between 7034174 + 6594321 = 13628495, which according to
Wittgenstein is intractable under the first notation, and 2 + 2 = 4, which
plainly is tractable?

Let us consider more closely whether Wittgenstein is right in claiming
that there is no proof of 7034174 + 6594321 = 13628495 in the first
notation (i.e., the unary notation). Wittgenstein is probably right in
denying that there is such a proof for humans limited to paper and pencil.
But for humans with access to computers, a proof in the first notation is a
very modest computation by present standards. Richard von Mises’
example contrasting writing speed for pencil and paper as opposed to
typewriters springs to mind. The perspicuity of equivalent claims in
alternate arithmetic notations depends on the resources we have for
demonstrating the equivalence. These resources in turn determine whether
we can expend enough effort to establish the equivalence.

In this vein consider the more general claim of Wittgenstein (1983, pp.
95, 143 ff.) that mathematical proofs must be perspicuous and
surveyable (terms he seems to use interchangeably). At times Wittgenstein
(1983, p. 143) seems to be saying no more than that proofs must be
exactly reproducible: “‘A mathematical proof must be perspicuous.’ Only
a structure whose reproduction is an easy task is called a ‘proof’.” But
when he deals with the question of representing and calculating with
numbers, perspicuity and surveyability look more like a capacity of
rational agents to take in calculations at a single glance (see Wittgenstein,
1983, p. 155).
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What is it for a proof to be surveyable? Is the 10,000 page proof of
the classification theorem for finite simple groups, scattered as it is
throughout hundreds of journal articles, surveyable?14 Group theorists
certainly consider the classification theorem as proven even though it is
certain that no one mathematician has a complete grasp of its proof. Is
the classification theorem therefore provable without its proof being
surveyable? I would say the proof is surveyable to the mathematical
community of group theorists, but not to any individual group theorist.
Moreover, I would say that what makes the proof surveyable to the
community but not to any individual is that the community is able to
expend enough effort to prove it and then check the proof, whereas no
one individual has the resources even to begin checking it, much less prove
it.

Wittgenstein relativized perspicuity and surveyability to the
individual. Thus for Wittgenstein what is perspicuous is perspicuous to
the individual and what is surveyable is surveyable to the individual.
Once, however, perspicuity and surveyability are understood in terms of
the availability of effort and the technologies by which effort can be
expended, the individual is no longer paramount. What becomes
important is whether enough effort can be expended to establish the
mathematical result in question. The actual agent that expends the
required effort is now left open. Certainly the agent can be a single
individual. But the agent can also be a computer, or an individual
working with a computer, or a community of mathematicians. Effort thus
provides a way of unpacking Wittgenstein’s notion of perspicuity and
surveyability.

As another example of how effort elucidates questions about the
limits to mathematical knowledge, consider how effort dissolves a
distinction of Norman Malcolm’s between mathematical knowledge in the
strong and weak sense. Malcolm (1952, pp. 73–74) lays out the
distinction as follows:

I have just now rapidly calculated that 92 times 16 is 1472. If I
had done this in the commerce of daily life where a practical

                                                
14What makes this theorem the more remarkable is that it can be stated on

a single page. As a classification theorem, its statement is just a list—“Here are
all the finite simple groups …”—where the ellipsis signifies the complete list
of groups which are both finite and simple. This list includes the cyclic groups
of prime order, the alternating groups on n elements for n ≥ 5, various sporadic
groups, etc. If one considers how little room it takes to state the theorem and
how much room it takes to prove it (not to mention the fifty years
mathematicians have actively worked on it), the ratio of statement length to
proof length is the smallest I know. Spanning fifty years, the project of
classifying all finite simple groups was finally completed in 1982. For more on
this achievement consult Gorenstein (1983; 1986).
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problem was at stake, and if someone had asked “Are you sure
that 92 x 16 = 1472?” I might have answered “I know that it is; I
have just now calculated it.” But also I might have answered “I
know that it is; but I will calculate it again to make sure.” And here
my language points to a distinction. I say that I know that 92 x 16
= 1472. Yet I am willing to confirm it—that is, there is something
that I should call “making sure”; and, likewise, there is something
that I should call “finding out that it is false.” If I were to do this
calculation again and obtain the result that 92 x 16 = 1372, and if
I were to carefully check this latter calculation without finding any
error, I should be disposed to say that I was previously mistaken
when I declared that 92 x 16 = 1472. Thus when I say that I know
that 92 x 16 = 1472, I allow for the possibility of a refutation, and
so I am using “know” in its weak sense.

Now consider propositions like 2 + 2 = 4 and 7 + 5 = 12. It is
hard to think of circumstances in which it would be natural for me
to say that I know that 2 + 2 = 4, because no one ever questions it.
Let us try to suppose, however, that someone whose intelligence I
respect argues that certain developments in arithmetic have shown
that 2 + 2 does not equal 4. He writes out a proof of this in which
I can find no flaw. Suppose that his demeanor showed me that he
was in earnest. Suppose that several persons of normal
intelligence became persuaded that his proof was correct and that
2 + 2 does not equal 4. What would be my reaction? I should say
“I can’t see what is wrong with your proof; but it is wrong,
because I know that 2 + 2 = 4.” Here I should be using “know” in
its strong sense. I should not admit that any argument or any
future development in mathematics could show that it is false that
2 + 2 = 4.

The propositions 2 + 2 = 4 and 92 x 16 = 1472 do not have
the same status. There can be a demonstration that 2 + 2 = 4. But
a demonstration would be for me (and for any average person)
only a curious exercise, a sort of game. We have no serious interest
in proving that proposition. It does not need a proof. It stands
without one, and would not fall if a proof went against it. The
case is different with the proposition that 92 x 16 = 1472. We
take an interest in the demonstration (calculation) because that
proposition depends upon its demonstration. A calculation may
lead me to reject it as false. But 2 + 2 = 4 does not depend on its
demonstration. It does not depend on anything! And in the
calculation that proves that 92 x 16 = 1472, there are steps that
do not depend on any calculation (e.g., 2 x 6 = 12; 5 + 2 = 7; 5 + 9
= 14).

I am sympathetic to Malcolm’s distinction, but not for reasons
Malcolm would accept. In my view he confuses a matter of degree for a
difference in kind. Malcolm’s distinction appears plausible, at least when
he contrasts 2 + 2 = 4 and 92 x 16 = 1472, because a matter of degree
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looks like a difference in kind if one attends to the extremes. Is 2 + 2 = 4
really beyond the reach of all our efforts to refute it? What about the
other examples Malcolm cites: 2 x 6 = 12, 5 + 2 = 7, 5 + 9 = 14? If we
represent these equations in a unary notation, it is by no means clear that
calculation and proof become superfluous:

2 x 6 = 12: || x |||||| = ||||||||||||

5 + 2 = 7: ||||| + || = |||||||

5 + 9 = 14: ||||| + ||||||||| = ||||||||||||||

Perhaps I’m erring on the side of too cumbersome a notation. For the
moment let’s therefore grant that 2 + 2 = 4, 2 x 6 = 12, 5 + 2 = 7, and 5 +
9 = 14 represent instances of knowledge in Malcolm’s strong sense. From
here it is a small step to claim that the addition and multiplication tables
we learned in grammar school constitute knowledge in the strong sense as
well. A further extrapolation is possible if we question the sanctity of
base ten numerical representations, and ask whether as grammar school
students we might not equally well have learned our addition and
multiplication tables for bases larger than ten. If so, at how large a base
should we stop? If we stop at base 93, then 92 x 16 = 1472 would
represent an instance of knowledge in the strong sense. Again, we run into
a problem of demarcation.

To the question that started Malcolm’s discussion, “Are you sure that
92 x 16 = 1472?” I would respond as follows: “I know 92 x 16 = 1472
because I’ve expended enough effort in calculation to check it to my
satisfaction. I could, however, expend still more effort to check it, and
thereby render it still more secure.” The degree to which an arithmetic
equation is securely established (in Malcolm’s words, “made sure”)
depends both on how complicated the equation is and on how much
effort was expended to check it. Without having done the calculation
myself, I would feel more confident about the correctness of 92 x 16 =
1472 if it were checked five times by an accountant as opposed to only
one time by a second grader. Against 92 x 16 = 1472, 2 + 2 = 4 has the
advantage of being less complicated, and therefore requiring less effort to
check.15 Given his distinction of mathematical knowledge into strong and

                                                
15“How,” ask Bradley and Swartz (1979, p. 156), “does one go about

checking for mistakes...? First and foremost, we recheck the process carefully.
Then if we wish still further corroboration, we might repeat the process, i.e., do
it over again from the beginning. Also we might enlist the aid of other persons,
asking them to go through the process themselves, and then comparing our
results with theirs. And finally, we might make our results public, holding
them up for scrutiny to a wider audience, and hoping that if there is a mistake,
the joint effort of many persons will reveal it.”
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weak senses, Malcolm sees 92 x 16 = 1472 as needing confirmation, but
2 + 2 = 4 as being immune to disconfirmation. For me both 92 x 16 = 1472
and 2 + 2 = 4 need to be confirmed by an expenditure of effort—the
former requiring a greater expenditure than the latter.

Although further examples could be given of how effort helps
elucidate questions about the practical possibility of mathematical
knowledge, I think enough has been said to draw the following conclusion:
The degree to which a mathematical claim can be securely established is
proportional to the amount of effort that can be expended by the relevant
community of mathematicians to check or refute the claim. Moreover,
whether enough effort can be expended to establish the claim depends on
the amount and nature of the resources available for expending effort
(e.g., computers allow for greater expenditures of effort in less time than
pencil and paper).

4. Epilogue
Some years back a social scientist told me about what was then

turning into a burgeoning area of research within the social
sciences—garbology.16 It was said tongue in cheek and I’m not even sure
whether I have the correct spelling, but the upshot was this: often it is
more enlightening to examine people’s garbage than their public
pronouncements. The example that sticks in my mind involves a
consumer economics researcher trying to discover the amount of alcohol
consumed within a given community. From a door to door survey it
appeared that the community was less under the influence of liquor than
it was under the influence of the local temperance league. Naturally the
researcher questioned whether the community was consuming as little
liquor as it claimed. To check this suspicion the researcher decided to
rummage through people’s garbage by night. The garbage revealed that
liquor was flowing far more freely than had been claimed publicly.

I find a parallel in mathematics. What mathematicians show the
world differs significantly from their desultory scribblings and reflections.
What ends up in mathematics journals is hardly ever historical
reconstruction. Try to publish a mathematics paper that describes your
motives for approaching a problem in a particular way or recounts
several dead ends you attempted before success, and your editor will
immediately command excisions. Mathematics journals want to save
space, and historical reconstruction is the place to start. The emphasis is
ever on positive results and concise verifications of those results. If a

                                                
16The social scientist was Richard Hren.
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result is in question, either its proof, its disproof, or a proof that there is
no proof is about all that will make it into the journals.

Now I don’t want to give the impression that the mathematical
community should change its ways, or include in every journal a section
entitled Aimless Meanderings. In fact, I think the mathematical community
is right to exclude such a section from its journals. My point is simply
that there is a lot more to mathematics than appears in print. Now one of
the things that tends not to appear in print is effort. Consider this
example. A few years ago William Thurston, the premier mathematician
in low-dimensional topology, wouldn’t check a supposed proof of the
Poincaré conjecture in dimension 3, not merely because the methods used
in the proof were in his opinion passé, but more importantly for this
discussion because it would have taken him several months to work
through the details of the proof. The problem of checking the proof was
therefore left to his students. As it turned out, his intuition was correct.
By refusing to devote his effort to checking an incorrect proof, he was able
to expend his effort more profitably elsewhere.

Granted, this is a purely sociological point about the practice of
mathematics. But it underscores why the role of effort in mathematics is
difficult to grasp unless one has actually worked within the mathematical
community. The mathematical community’s emphasis is on finished
products. The world sees the finished products and rightly stands in awe.
Unfortunately, the effort involved in attaining these finished products
tends to get short shrift. The formalist picture of mathematics is as guilty
on this point as any. Mach’s (1986, p. 195) positivist ideas about
economy of thought fare no better, since for him economy in mathematics
consists in “its evasion of all unnecessary thought and on its wonderful
saving of mental operations.”17 Mach’s economy is the economy of a
perfected mathematics, not the economy of a mathematics struggling to
develop.

A view of mathematics that takes effort seriously is a view not
wedded to traditional logical theory. Traditional logical theory has
concerned itself with the conditions under which a mathematical
proposition is true or provable, but hasn’t concerned itself much with the
quite different problem of determining the conditions under which enough
effort is available even to start addressing the question whether the
proposition is true or provable. Thus, for mathematical propositions, and
especially for computational problems, where the only reason for
ignorance may be our inability or unwillingness to expend sufficient effort,
effort and not traditional logical theory seems to provide the right mode
of analysis.
                                                

17For Mach’s theory of economy as it relates to both mathematics and
science see Blackmore (1972).
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By being sensitive to the role of effort in mathematics, we obtain a
picture of mathematics quite different from the Platonic picture of
timeless unchanging mathematical forms, the Machian picture of a perfect
mental economy,18 or the formalist picture of an inference engine chugging
along. Rather we come to view mathematics as a dynamic entity,
struggling to create new techniques and technologies in order to increase
the resources it has for expending effort and thereby to facilitate its
continued growth and flourishing, which in turn involves the creation of
still newer and better techniques and technologies to continue the cycle of
growth. This is certainly a pragmatic view of mathematics. But it is also a
developmental and organismic view of mathematics.

This view of mathematics is perfectly compatible with Christian
theism. It does nothing to undercut the existence of mathematical truth or
God’s knowledge of mathematical truth. It does point up, however, that
God’s knowledge of mathematical truth is very different from ours. God’s
knowledge of mathematical truth is a direct intuition. God grasps the
totality of relations among mathematical claims in one direct act of
intuition. As finite rational agents we don’t. We must build our
mathematical edifices piecemeal. What’s more, we must build our
mathematical edifices without the guarantee that they won’t come
tumbling down because of some hidden inconsistency. The effort we
expend in building and testing our mathematical edifices gives us
confidence that they are secure and lay hold of mathematical truth. This
confidence, however, must always fall short of Cartesian certainty. It is
an inductive confidence, one that hinges on our own efforts as well as on
our faith that God is guiding those efforts.

                                                
18Cf. Mach’s (1986, p. 195) claim that “the greatest perfection of mental

economy is attained in that science which has reached the highest formal
development, and which is widely employed in physical inquiry, namely
mathematics.”
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