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A Primer on Probability for Design Inferences 
By William A. Dembski 

[version 1.1] 

 
 
Distinction between Outcomes and Events 
 
Probabilities are numbers between 0 and 1 that attach to events. Events always occur with 
respect to a reference class of possibilities. Consider a die with faces 1 through 6. The reference 
class of possibilities in this case can be represented by the set {1, 2, 3, 4, 5, 6}. Any subset of this 
reference class then represents an event. For instance, the event Eodd, i.e., “an odd number was 
tossed,” corresponds to {1, 3, 5}. Such an event is said occur if any one of its outcomes occurs, 
i.e., if either a 1 is tossed or a 3 or a 5. Outcomes can therefore be represented as singleton sets, 
i.e., sets with only one element. Thus, the outcomes associated with Eodd = {1, 3, 5} are E1 = {1}, 
E3 = {3}, and E5 = {5}. Outcomes are sometimes also called elementary events. Events include 
not only outcomes but also composite events like Eodd that include more than one outcome. 
 
 
The Axioms of Probability 
 
Probabilities obey the following axioms: (1) The impossible event (i.e., an event that entails a 
physical or logical impossibility) is represented by the empty set and has probability zero. (2) 
The necessary event (i.e., an event that is guaranteed to happen) is represented by the entire 
reference class of possibilities and has probability one (e.g., with the die example, Enec = {1, 2, 3, 
4, 5, 6} has probability one). Events that are mutually exclusive have probabilities that sum 
together. Thus, in the previous example, P(Eodd) = P(E1) + P(E3) + P(E5) (i.e., P({1, 3, 5}) = 
P({1}) + P({3}) + P({5}). Important: mutually exclusive and exhaustive events always sum to 
one. 
 
 
Interpretation of Probability 
 
Probabilities are interpreted in three principal ways: (1) Degree of belief -- probability measures 
strength of belief that an event will occur. (2) Frequentist approach -- probability is a relative 
frequency (i.e., the number of occurrences of an event divided by the number of observed 
oppporutnities for the event to occur; relative frequencies are also called empirical probabilities). 
(3) Theoretical approach -- probability derives from properties of the system generating the 
events (e.g., dies are rigid, homogeneous cubes whose symmetry confers probability 1/6 on each 
face; quantum mechanical systems have probabilities derived from eigenvalues associated with 
the eigenstates of an observable).  
 
 
Conjunction, Disjunction, and Negation 
 
Events can be modified by conjunction, disjunction, and negation. E & F is the conjunction (or 
intersection, also written E ∩ F) of E and F and denotes the event such that both E and F occur.  
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E v F is the disjunction (or union, also written E ∪ F) of E and F and denotes the event such that 
either E or F or both occur. ~E is the negation (or complement, also written Ec) of E and denotes 
the the event that excludes E’s occurrence. In pictures: 
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 Conditional Probability 
 
Suppose event F is known to have occurred and we then ask what is the probability of E. In that 
case, the reference class of possibilities contracts to F, and the probability of E is no longer 
simply P(E) (i.e., the probability of E within the original reference class), but the probability of E 
within the new reference class F, called the conditional probability of E given F and written 
P(E|F). This probability is by definition 
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Graphically, this probability can be represented as follows: 
 

 
 
Probabilistic Independence 
 
As we have seen, for mutually exclusive events probabilities add. Specifically, the probability of 
a disjunction is the sum of the probabilities of the disjuncts. Thus, if E1, E2, …, En are mutually 
exclusive, P(E1 v E2 v … v En) = P(E1) + P(E2) + … + P(En). Does a corresponding relationship 
hold for conjunction? For E1, E2, …, En arbitrary events such that no conjunction of them has 
zero probability, it follows from the definition of conditional probability that 
 

P(E1 & E2 & … & En) = P(E1) x P(E2| E1) x P(E3| E1 & E2) x … x P(En| E1 & E2 & … & En–1). 
 
For instance, for just E1 and E2, 
 
 P(E1 & E2)  = 1 x P (E1 & E2)  

  = [P(E1)/ P(E1)] x P(E1 & E2) 

  = P(E1) x [P (E1 & E2) / P(E1)] 

  = P(E1) x P(E2| E1) 
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If, now, P(E2| E1) = P(E2), it follows that  
 
 P(E1 & E2)  = P(E1) x P(E2)  
 
In that case, we say that E1 and E2 are probabilistically (or stochastically) independent. In 
general, we say that events E1, E2, …, En are independent if for all distinct events taken from this 
class, i.e., Ei1, Ei2, …, Eik, 1 ≤ k ≤ n,  
 

P(Ei1 & Ei2 & … & Eik) = P(Ei1) x P(Ei2) x … x P(Eik). 
 
Events are probabilistically independent if they derive from causally independent processes. The 
converse, however, is not be true -- events can be probabilistically independent without being 
causally independent.  
 
 
Equiprobability and Uniform Probability 
 
In many situations, individual outcomes (elementary events) each have the same probability. In 
that case, if there are N possible outcomes, each outcome has probability 1/N. Equiprobability in 
this sense is a special case of uniform probability in which isomorphic events under some 
equivalence relation have identical probability (see my 1990 article on uniform probability at 
http://www.designinference.com/documents/2004.12.Uniform_Probability.pdf). 
 
 
The Fisherian Approach to Design Inferences 
 
This is the approach I adopt and have developed. In this approach there are always two events: 
an event E that the world presents to us and an event T that includes E (i.e., the occurrence of E 
entails the occurrence of T) and that we are able to identify via an independently given pattern 
(i.e., a pattern that we can reproduce without having witnessed E). Think of E as an arrow and T 
as a fixed target. If E lands in T and the probability of T is sufficiently small, i.e., P(T) is close to 
zero, then, on my approach, a design inference is warranted. For the details, see my article at 
http://www.designinference.com/documents/2005.06.Specification.pdf titled “Specification: The 
Pattern That Signifies Intelligence.” 
 
 
Bayes’s Theorem 
 
Given an event E and chance hypotheses H1, H2, …, Hn that are mutually exclusive and 
exhaustive, the probability of any one of these hypotheses Hi given E is given by 
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This is the simple form of Bayes’s theorem. Since H1, H2, …, Hn are mutually exclusive and 
exhaustive, it follows that the denominator here can be rewritten as  
 

P(E)  =   P([E & H1] v [E & H2] v … v [E & Hn]) 

 =   P(E & H1) + P(E & H2) + … + P(E & Hn) 

 =   P(E|H1)P(H1) + P(E|H2) P(H2) + … + P(E|Hn) P(Hn) 
 
These equalities follow simply from unpacking the axioms of probability and the definition of 
conditional probability. Substituting this last expression for the denominator in the simple form 
of Bayes’s theorem now yields the standard form of Bayes’s theorem: 
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The Bayesian Approach to Design Inferences 
 
In this approach, one considers an event E and hypotheses H1 and H2. Think of H1 as a design 
hypothesis and H2 as a chance/evolutionary hypothesis. Moreover, think of the event E as 
evidence for either of these hypotheses. To decide whether the evidence E better supports either 
H1 or H2 therefore amounts to comparing the probabilities P(H1|E) and P(H2|E) and determining 
which is bigger. These probabilities are known as posterior probabilities and measure the 
probability of a hypothesis given the event/evidence/data E.  
 
Posterior probabilities cannot be calculated directly but must rather be calculated on the basis of 
Bayes’s theorem. Using the simple form of Bayes’s theorem, we find that the posterior 
probability P(Hi|E) (i = 1 or 2) is expressed in terms of P(E|Hi), known as the likelihood of Hi 
given E, and P(Hi), known as the prior probability of Hi. Often prior probabilities cannot be 
calculated directly. Moreover, in calculating the posterior probability, we still need to compute 
the denominator in the simple form of Bayes’s theorem, namely, P(E).  
 
Fortunately, this last term does not need to be calculated. Because the aim is to determine which 
of these hypotheses is better supported by the evidence, it is enough to form the ratio of posterior 
probabilities 
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and determine whether it is greater than or less than 1. If this ratio is greater than 1, it supports 
the hyothesis in the numerator (H1, which we are treating as the design hypothesis). If it is less 
than 1, it supports the hypothesis in the denominator (H2, which we are treating as the 
chance/evolution hypothesis). 
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This ratio, using the simple form of Bayes’s theorem, can now be rewritten as follows (note that 
the denominator in Bayes’s theorem simply cancels out): 
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The first factor on the right side of the equation is known as the likelihood ratio; the second is 
the ratio of priors, which measures our relative degree of belief in these two hypotheses before E 
entered the picture. Since the ratio on the left side of this equation represents the relative degree 
of belief in these two hypotheses once E is in hand, this equation shows that updating our prior 
relative degree of belief in these hypotheses (i.e., before the evidence E was factored in) is 
simply a matter of multiplying the ratio of prior probabilities times the likelihood ratio.  
 
In this way, the likelihood ratio, i.e.,  
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is said the measure the strength of evidence that E provides for H1 in relation to H2. Thus, since 
we are treating H1 as a design hypothesis and H2 as a chance/evolutionary hypothesis, if this ratio 
is bigger than 1, E favors the design hypothesis and warrants a design inference. On the other 
hand, if this ratio is less than 1, it favors the chance/evolutionary hypothesis and therefore does 
not warrant a design inference. 
 
Although at first blush plausible, this Bayesian approach to design inferences is deeply 
problematic. I discuss its problems at length in an article titled “Design by Elimination vs. 
Design by Comparison,” which is chapter 33 of my book The Design Revolution. That article 
distinguishes my Fisherian approach to design inferences from the Bayesian approach and can be 
found at http://www.designinference.com/documents/2005.09.Fisher_vs_Bayes.pdf. 
 
 


