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Design by Elimination vs. Design by Comparison 
(Chapter 33 from The Design Revolution) 

By William A. Dembski 
 
 

How are design hypotheses properly inferred, simply by eliminating chance 
hypotheses or by comparing the likelihood of chance and design hypotheses? 

 
 
Behind this question are two fundamentally different approaches about how to reason with 
chance hypotheses. One approach, due to Ronald Fisher, rejects a chance hypothesis provided 
sample data appear in a prespecified rejection region. The other, due to Thomas Bayes, rejects a 
chance hypothesis provided an alternative hypothesis confers a bigger probability on the data in 
question than the original hypothesis. In the Fisherian approach, chance hypotheses are rejected 
in isolation for rendering data too improbable. In the Bayesian approach, chance hypotheses are 
eliminated provided some other hypotheses render the data more probable. Whereas in the 
Fisherian approach the emphasis is on elimination, in the Bayesian approach the emphasis is on 
comparison. These approaches are incompatible, and the statistical community itself is deeply 
riven over which of these approaches to adopt as the right canon for statistical rationality. The 
difference reflects a deep divergence in fundamental intuitions about the nature of statistical 
rationality and in particular about what counts as statistical evidence. 
 
The most influential criticism of specified complexity charges it with falling on the wrong side 
of this divide. Specifically, critics charge that to use specified complexity to infer design 
presupposes an eliminative, Fisherian approach to reasoning with chance hypotheses whereas the 
right approach to inferring design needs to embrace a comparative, Bayesian approach. The most 
prominent scholar to make this criticism is Elliott Sober. Other scholars have offered this 
criticism as well, and many more still have cited it as decisively refuting specified complexity as 
a sign of intelligence.  
 
In responding to this criticism, let’s begin with a reality check. Often when the Bayesian 
literature tries to justify Bayesian methods against Fisherian methods, authors are quick to note 
that Fisherian methods dominate the scientific world. For instance, Richard Royall (who strictly 
speaking is a likelihood theorist rather than a Bayesian—the distinction is not crucial to this 
discussion) writes: “Statistical hypothesis tests, as they are most commonly used in analyzing 
and reporting the results of scientific studies, do not proceed ... with a choice between two [or 
more] specified hypotheses being made ... [but follow] a more common procedure....” (Statistical 
Evidence: A Likelihood Paradigm, Chapman & Hall, 1997.) Royall then outlines that common 
procedure, which requires specifying a single chance hypothesis, using a test-statistic to identify 
a rejection region, checking whether the probability of that rejection region under the chance 
hypothesis falls below a given significance level, determining whether a sample (the data) falls 
within that rejection region, and if so rejecting the chance hypothesis. In other words, the 
sciences look to Ronald Fisher and not Thomas Bayes for their statistical methodology. Howson 
and Urbach, in Scientific Reasoning: The Bayesian Approach, likewise admit the underwhelming 
popularity of Bayesian methods among working scientists. 
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So, are the majority of scientists just being stupid or lazy in adopting a Fisherian approach to 
statistical reasoning? To answer this question, let’s look at two prototypical examples where 
Fisherian and Bayesian methods are employed. Once these examples are in hand, we can tinker 
with them to see what can go wrong with both methods. Let’s start with an example of Fisherian 
reasoning. The Fisherian approach eliminates chance hypotheses in isolation, so we need only 
consider a single chance hypothesis for elimination. Let’s take a particularly simple one, namely, 
the chance hypothesis that characterizes the tossing of a fair coin. To test whether the coin is 
biased in favor of heads, and thus not fair, one can set a rejection region of ten heads in a row 
and then flip the coin ten times. In Fisher’s approach, if the coin lands ten heads in a row, then 
one is justified rejecting the chance hypothesis. The improbability of tossing ten heads in a row, 
assuming the coin is fair, is approximately one in a thousand (i.e., .001). 
 
Next, to illustrate the Bayesian approach, consider the following probabilistic set-up. Imagine 
two coins, the one fair and the other biased. Assume the biased coin has probability of landing 
heads ninety percent of the time. In addition, imagine a giant urn with a million equally sized 
balls, all of which except one are white, the lone exception being black. Now imagine that a 
single random sample will be taken from the urn and that if a white ball is selected (which is 
overwhelmingly probable), then the fair coin will be tossed ten times, but if the one lone black 
ball is selected (which is overwhelmingly improbable), then the biased coin will be tossed ten 
times. Now imagine that all you see is a coin tossed ten times and each time landing heads. The 
probability of it landing ten heads in a row given that the fair coin was tossed is approximately 
.001 (one in a thousand). But the probability of it landing ten heads in a row given that the biased 
coin was tossed is approximately .35 (a little better than one in three). Within the Bayesian 
literature, these probabilities are known as likelihoods.  
 
So which coin was tossed, the fair one or the biased one? If one looks purely at likelihoods, it 
appears that the biased coin was tossed—indeed, it’s much more likely that ten heads in a row 
will appear from the biased coin than from the fair coin. But that answer will not do. The 
problem is that which coin gets tossed has what in the Bayesian literature is called a prior 
probability. That prior probability renders it much more likely that the fair coin was tossed than 
the biased coin. The fair coin has prior probability .999999 of being tossed (because a white ball 
is that likely to be selected from the urn) whereas the biased coin has prior probability .000001 of 
being tossed (because the one lone black ball is only that likely to be selected from the urn).  
 
To decide which coin was tossed, these prior probabilities need to be factored into the 
likelihoods calculated earlier. To do that, one calculates what in the Bayesian literature are 
known as posterior probabilities (these are calculated via Bayes’s Theorem). The posterior 
probability for the fair coin being tossed given that ten heads in a row were observed is .9996 
whereas the posterior probability for the biased coin being tossed given that ten heads in a row 
were observed is .0004. Given the probabilistic set-up for the two coins and urn as described 
above, it is therefore much more probable that the fair coin was tossed than the biased coin. And 
this is the case even though the observed outcome of ten heads in a row taken by itself is more 
consistent with the biased coin than with the fair coin. 
 



 3

Given these particularly neat and clean illustrations of the Fisherian and Bayesian approaches, 
one might wonder what’s the problem with either. Both approaches, as illustrated in these 
examples, seem eminently reasonable given the questions they are called to answer. 
Nevertheless, both approaches raise serious conceptual problems when probed more deeply. I 
want in the remainder of this chapter to describe the conceptual problems raised by the Fisherian 
approach and indicate how my work on specified complexity helps resolve them. Next I want to 
describe the conceptual problems raised by the Bayesian approach and indicate why they render 
it inadequate as a general model of statistical rationality. In particular, I show how the Fisherian 
approach can be made logically coherent and why the Bayesian approach, when it works (which 
is not too often), must in fact presuppose the Fisherian approach.  
 
So, what are the problems with the Fisherian approach and how does my work on specified 
complexity help resolve them? Schematically, the Fisherian approach looks as follows: A chance 
hypothesis defined with respect to a reference class of possibilities is given. Also given is a 
rejection region from that reference class. With the chance hypothesis and rejection region in 
place, an event is then sampled from the reference class of possibilities. If that event (the sample 
or data) falls within the rejection region and if the probability of that rejection region with 
respect to the chance hypothesis is sufficiently small, then the chance hypothesis is rejected. 
Intuitively, think of an arrow shot at a large wall displaying a fixed target. The wall corresponds 
to the reference class of possibilities (all the places the arrow might land) and the target to the 
rejection region. Provided that the arrow landing in the target (i.e., the sample falling in the 
rejection region) has sufficiently small probability, then the chance hypothesis is rejected. In our 
earlier coin tossing example, the rejection region was all possible sequences of heads and tails, 
the rejection region was all sequences beginning with ten heads in a row, the sample was a 
sequence of ten heads in a row, and the chance hypothesis presupposed a fair coin.  
 
Is there something wrong with this picture? Although this picture has proven quite successful in 
practice, Ronald Fisher, in formulating its theoretical underpinnings, left something to be 
desired. There are three main worries: (1) How does one make precise what it means for a 
rejection region to have “sufficiently small” probability with respect to a chance hypothesis? (2) 
How does one characterize rejection regions so that a chance hypothesis doesn’t automatically 
get rejected in case it actually is operating? (3) Why should a sample that falls in a rejection 
region count as evidence against a chance hypothesis? 
 
The first concern is usually stated in terms of setting a “significance level.” A significance level 
prescribes the degree improbability below which a rejection region eliminates a chance 
hypothesis once the sample falls within it. Significance levels in the social sciences literature, for 
instance, usually weigh in at .05 or .01. But where do these numbers come from? In fact, they are 
entirely arbitrary. This arbitrariness has dogged the Fisherian approach from the start. 
Nevertheless, there is a way around it.  
 
Consider again our example of tossing a coin ten times and getting ten heads in a row. The 
rejection region, which matches this sequence of coin tosses, therefore sets a significance level of 
.001. If we tossed ten heads in a row, we might therefore regard this as evidence against the coin 
being fair. But what if we didn’t just toss the coin ten times on one occasion but tossed it ten 
times on multiple occasions? If most of the time we tossed the coin its behavior was entirely 
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what one would expect from a fair coin, then on those few occasions when we observed ten 
heads in a row, we would have no reason to suspect that the coin was biased since fair coins, if 
tossed sufficiently often, will produce any sequence of coin tosses, including ten heads in a row. 
The strength of the evidence against a chance hypothesis when a sample falls within a rejection 
region therefore depends on how many samples are taken or might have been taken. These 
samples constitute what I call replicational resources. The more such samples, the greater the 
replicational resources 
 
Significance levels therefore need to factor in replicational resources if samples that match these 
levels are to count as evidence against a chance hypothesis. But that’s not enough. In addition to 
factoring in replicational resources, significance levels also need to factor in what I call 
specificational resources. The rejection region on which we’ve been focusing specified ten heads 
in a row. But surely if samples that fall within this rejection region could count as evidence 
against the coin being fair, then samples that fall within other rejection regions must likewise 
count as evidence against the coin being fair. For instance, consider the rejection region that 
specifies ten tails in a row. By symmetry, samples that fall within this rejection region must 
count as evidence against the coin being fair just as much as samples falling within the rejection 
region that specifies ten heads in a row. 
 
But if that is the case, then what’s to prevent the entire range of possible coin tosses from being 
swallowed up by rejection regions so that regardless what sequence of coin tosses is observed, it 
always ends up falling in some rejection region and therefore counting as evidence against the 
coin being fair? More generally, what’s to prevent any reference class of possibilities from being 
partitioned into a mutually exclusive and exhaustive collection of rejection regions so that any 
sample will always fall in some one of these rejection regions and therefore count as evidence 
against any chance hypothesis whatsoever?  
 
The way around this concern is to limit rejection regions to those that can be characterized by 
low complexity patterns (such a limitation has in fact been implicit when Fisherian methods are 
employed in practice). Rejection regions, and specifications more generally, correspond to events 
and therefore have an associated probability or probabilistic complexity. But rejection regions 
are also patterns and as such have an associated complexity that measures the degree of 
complication of the patterns, or what I call its specificational complexity. Typically this form of 
complexity corresponds to a Kolmogorov compressibility measure or minimum description 
length (the shorter the description, the lower the specificational complexity—see 
http://www.mdl-research.org). I summarize these two types of complexity in chapter 10. Note, 
specificational complexity arises very naturally—it is not artificial or ad hoc construct designed 
simply to shore up the Fisherian approach. Rather, it has been implicit right along, enabling 
Fisher’s approach to flourish despite the inadequate theoretical underpinnings that Fisher 
provided for it. 
 
Replicational and specificational resources together constitute what I call probabilistic 
resources. Probabilistic resources resolve the first two worries raised above concerning Fisher’s 
approach to statistical reasoning. Specifically, probabilistic resources enable us to set rationally 
justified significance levels, and they constrain the number of specifications, thereby preventing 
chance hypotheses from getting eliminated willy-nilly. Probabilistic resources therefore provide 
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a rational foundation for the Fisherian approach to statistical reasoning. What’s more, by 
estimating the probabilistic resources available in the known physical universe, we can set a 
significance level that’s justified irrespective of the probabilistic resources in any given 
circumstance. Such a context-independent significance level is thus universally applicable and 
definitively answers what it means for a significance level to be “sufficiently small” regardless of 
circumstance. For a conservative estimate of this significance level, known as a universal 
probability bound, see chapter 10. For the details about placing Fisher’s approach to statistical 
reasoning on a firm rational foundation, see chapter 2 of No Free Lunch.  
 
That leaves the third worry concerning the Fisherian approach to statistical reasoning, namely, 
Why should a sample that falls in a rejection region (or, more generally, an outcome that matches 
a specification) count as evidence against a chance hypothesis? Once one allows that the 
Fisherian approach is logically coherent and that one can eliminate chance hypotheses 
individually simply by checking whether samples fall within suitable rejection regions (or, more 
generally, outcomes match suitable specifications), then it is a simple matter to extend this 
reasoning to entire families of chance hypotheses, perform an eliminative induction (see chapter 
31), and thereby eliminate all relevant chance hypotheses that might explain a sample. And from 
there it is but a small step to infer design.  
 
Let’s stay with this last point for a moment—how does one go from eliminating chance to 
inferring design? Indeed, what justifies this move from chance elimination to design inference? 
We are supposing, for the moment, that the Fisherian approach can legitimately eliminate 
individual chance hypotheses and thus, by successive elimination, eliminate whole families of 
chance hypotheses. To eliminate a chance hypothesis, the Fisherian approach determines 
whether an outcome matches a specification and whether the specification itself describes an 
event of small probability (the event here comprises all outcomes that match the specification). 
Given that we’ve successfully characterized all chance hypotheses that exclude design and that 
we’ve been able to eliminate them by means of such a specification (the outcome therefore 
exhibits specified complexity), why should we think that outcome is designed? 
 
In this case the specification itself acts as a logical bridge between chance elimination and design 
inference. Here’s the rationale: If we can spot an independently given pattern (i.e., specification) 
in some observed outcome and if possible outcomes matching that pattern are, taken jointly, 
highly improbable (in other words, the observed outcome exhibits specified complexity), then 
it’s more plausible that some end-directed agent or process produced the outcome by 
purposefully conforming it to the pattern than that it simply by chance ended up conforming to 
the pattern. Accordingly, even though specified complexity establishes design by means of an 
eliminative argument, it is not fair to say that it establishes design by means of a purely 
eliminative argument. The independently given pattern, or specification, contributes positively to 
our understanding of the design inherent in things that exhibit specified complexity.  
 
To avoid this slippery slope to design, Bayesian theorists deny that the Fisherian approach can 
legitimately eliminate even one chance hypothesis (much less sweep the field clear of all relevant 
chance hypotheses as required for a successful design inference). The problem, as they see it, is 
that samples falling within rejection regions (or, more generally, outcomes matching 
specifications) cannot serve as evidence against chance hypotheses. Rather, the only way for 
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there to be evidence against a chance hypothesis is for there to be better evidence in favor of 
some other hypothesis.  
 
I’ll analyze the Bayesian approach to statistical evidence momentarily, but first I need to say a 
word about evidence generally. In World Without Design, Michael Rea remarks, “True inquiry is 
a process in which we try to revise our beliefs on the basis of what we take to be evidence.” He 
continues, “But this means that, in order to inquire into anything, we must already be disposed to 
take some things as evidence. In order even to begin inquiry, we must already have various 
dispositions to trust at least some of our cognitive faculties as sources of evidence and to take 
certain kinds of experiences and arguments to be evidence. Such dispositions (let’s call them 
methodological dispositions) may be reflectively and deliberately acquired.”  
 
Accordingly, what counts as evidence (and that includes statistical evidence) is decided not on 
the basis of evidence but on the basis of dispositions that themselves are not mandated by 
evidence. Why, for instance, do most mathematicians find proof by contradiction (i.e., reductio 
ad absurdum) as compelling evidence for the truth of a mathematical proposition, but others (the 
intuitionists) find such proofs inadequate and instead require constructive proofs? Or again, why 
do Fisherian and Bayesian approaches to statistical evidence remain at loggerheads? In such 
cases the debate is not merely over how to weigh certain evidence but over what counts as 
evidence in the first place. The issue of what counts as evidence cuts across the entire debate 
over intelligent design. Can there even be such a thing as evidence for an unevolved intelligence 
that designs biological complexity? Many naturalistic scientists and philosophers deny it. But to 
deny it coherently, one needs an evidential framework for denying it. The preeminent framework 
in that regard is Bayesian. I want therefore next to examine that framework and specifically to 
show why it is inadequate both for drawing design inferences as well as for precluding them. 
 
When the Bayesian approach tries to adjudicate between chance and design hypotheses, it treats 
both chance and design hypotheses as having prior probabilities and as conferring probabilities 
on outcomes and events. Thus, given the chance hypothesis H, the design hypothesis D, and the 
outcome E, the Bayesian theorist attempts to compare the posterior probabilities of H and D on E 
(i.e., P(H|E) vs. P(D|E)). If the posterior probability of D on E is greater than that of H on E, then 
E counts as evidence in favor of D, and the strength of that evidence is proportional to how much 
greater P(D|E) is than P(H|E). Unfortunately, calculating posterior probabilities requires knowing 
prior probabilities (i.e., P(H) and P(D)), and often these are not available. In that case, one may 
merely calculate the likelihoods of E on both H and D (i.e., P(E|H) vs. P(E|D)).  
 
There’s a stripped down version of the Bayesian approach known as the likelihood approach that 
essentially ignores prior probabilities and simply looks at the likelihood ratio (i.e., 
P(E|H)/P(E|D)) to determine strength of evidence in favor of a hypothesis. This, however, makes 
for an idiosyncratic understanding of evidence. Evidence, as usually understood, refers to what 
causes us to revise our beliefs. But likelihoods ratios are in no position to do that without help 
from prior probabilities. For instance, if I hear from my attic the pitter-patter of little feet and the 
sound of bowling pins colliding, the likelihood of the design hypothesis that gremlins are 
bowling in my attic may be greater than the likelihood of any chance hypothesis that purports to 
explain those sounds. And yet, my disbelief in the gremlin hypothesis would remain as utter and 
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complete as before because of my prior belief that gremlins don’t exist (in Bayesian terms, the 
prior probability P(D), where D is the gremlin hypothesis, is for me effectively zero).  
 
I’ve just described the Bayesian approach to assessing the evidence for design hypotheses in 
comparison with chance hypotheses. Accordingly, to draw a design inference is to determine that 
the evidence, construed in Bayesian or likelihood terms, favors design over chance. What’s 
wrong with this approach inferring design? Lots. I’ll briefly summarize what’s wrong bullet-
point fashion. For more details, refer to chapter 2 of No Free Lunch.  
 
(1) Need for prior probabilities. As we’ve already seen, for the Bayesian approach to work 
requires prior probabilities. Yet prior probabilities are often impossible to justify. Unlike the 
example of the urn and two coins discussed earlier, in which drawing a ball from an urn neatly 
determines the prior probabilities regarding which coin will be tossed, for most design 
inferences, especially the interesting ones like whether there is design in biological systems, we 
have no handle on the prior probability of a design hypothesis, or that prior probability is fiercely 
disputed (theists, for instance, might regard the prior probability as high whereas atheists would 
regard it as low).  
 
(2) Design hypotheses conferring probabilities. The Bayesian approach requires that design 
hypotheses, as with chance hypotheses, confer probabilities on events. In the notation above, for 
the Bayesian approach to work, the likelihoods P(E|D) and P(E|H) both need to be well-defined. 
Suppose E denotes the event responsible for a certain gene, where this gene in turn codes for a 
certain enzyme. Given the various natural processes to which genes are subject (mutation, 
deletion, duplication, cross-over, etc.), P(E|H) is well-defined. But what about P(E|D)? Assuming 
the enzyme in question constitutes an unprecedented biological innovation, how do we assign a 
probability to a designer designing it?  
 
The difficulty here is not confined to biological design hypotheses. Indeed, it applies to all cases 
of innovative design. To be sure, there are design hypotheses that confer reliable probabilities. 
For instance, my typing this book confers a probability of about thirteen percent on the letter 
“e”—that’s how often on average writers in English employ the letter “e.” But what’s the 
probability of me writing this book? What’s the probability of Rachmaninoff composing his 
variations on a theme of Paganini? What’s the probability of Shakespeare writing his sonnets? 
When the issue is creative innovation, the very act of expressing the likelihood P(E|D) becomes 
highly problematic and prejudicial. It puts creative innovation by a designer in the same boat as 
natural laws, requiring of design a predictability that’s circumscribable in terms of probabilities. 
But designers are inventors of unprecedented novelty, and such creative innovation transcends 
all probabilities.  
 
(3) The illusion of mathematical rigor. As I noted in the previous point, if E denotes the 
occurrence of a certain gene coding for a certain novel enzyme, then P(E|H) can reasonably be 
regarded as having a well-defined probability. Provided that the problem of assessing this 
probability is not too technically difficult, we may be able to evaluate it precisely or at least 
estimate an upper bound for it. But what about P(E|D)? What about probabilities like this more 
generally where a design hypothesis confers a probability on a creative innovation? Not only is 
there no reason to think that such probabilities make sense (see the previous point), but when 
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Bayesians reason with such probabilities, they do so without attaching any precise numbers to 
them. The probability P(E|D) functions as a placeholder for ignorance, lending an air or 
mathematical rigor to what really is just a subjective assessment of how plausible a design 
hypothesis seems to the person offering a Bayesian analysis. 
 
(4) Eliminating chance without comparison. Within the Bayesian approach, statistical 
evidence is inherently comparative—there’s no evidence for or against a hypothesis as such but 
only better or worse evidence for one hypothesis in relation to another. But that all statistical 
reasoning should be comparative in this way cannot be right. There exist cases where one and 
only one statistical hypothesis is relevant and needs to be assessed. Consider, for instance a fair 
coin (i.e., a perfectly symmetrical rigid disk with distinguishable sides) that you yourself are 
tossing. If you witness a thousand heads in a row (an overwhelmingly improbable event), you’ll 
be inclined to reject the only relevant chance hypothesis, namely, that the coin tosses are 
independent and identically distributed with uniform probability.  
 
Does it matter to your rejection of this chance hypothesis whether you’ve formulated an 
alternative hypothesis? I submit it does not. To see this, ask yourself when do you start looking 
for alternative hypotheses in such scenarios. The answer is, Precisely when a wildly improbable 
event like a thousand heads in a row occurs. So, it’s not that you started out comparing two 
hypotheses, but rather that you started out with a single hypothesis, which, when it became 
problematic on account of a wild improbability (itself suggesting that Fisherian significance 
testing lurks here in the background), you then tacitly rejected it by inventing an alternative 
hypothesis. The alternative hypothesis in such scenarios is entirely ex post facto. It is invented 
merely to keep alive the Bayesian fiction that all statistical reasoning must be comparative.  
 
 (5) Backpedaling priors. As a variant of the last point, return to the earlier example of an urn 
with a million balls, one black and the rest white. As before, imagine that a fair coin is to be 
tossed if a white ball is randomly sampled from the urn but that a biased coin with probability .9 
of landing heads is to be tossed otherwise. This time, however, imagine that the coin is tossed not 
ten times but ten thousand times and that each time it lands heads. The probability of getting ten 
thousand heads in a row with the fair coin is approximately 1 in 103010 and with the biased coin 
approximately 1 in 10458 (with ten thousand tosses, heads are bound to turn up for either coin). A 
Bayesian analysis then shows that the probability that a white ball was selected is approximately 
1 in 102546 and the probability that the lone black ball was selected is 1 minus that minuscule 
probability.  
 
Should we therefore, as good Bayesians, conclude that the black ball was indeed selected and 
that the biased coin was indeed flipped (the selection of the black ball being vastly more 
probable, given ten thousand heads in a row, than the selection of a white ball)? Clearly this is 
absurd. The probability of getting ten thousand heads in a row with either coin is vastly 
improbable, and it doesn’t matter which urn was selected. The only sensible conclusion is that 
neither coin was randomly tossed ten thousand times. A Bayesian may therefore want to change 
the prior probability to introduce some doubt about whether the urn and subsequently one of the 
two coins were random sampled. But as in the previous point, we need to ask what induces us to 
change or reevaluate our prior probabilities. Not strictly Bayesian considerations but rather 
considerations of small probability based on chance hypotheses that, as first posed, admit no 
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alternatives. The alternatives need then to be introduced subsequently because Fisherian, not 
Bayesian, considerations prompt them.  
 
(6) Independent empirical evidence for design. Bayesian theorists are often wedded to a 
Humean inductive framework in which design hypotheses require independent empirical 
evidence of a designer actually at work (i.e., the camera is running and the designer is—or at 
least in principle could be—caught on video tape) before design may be legitimately attributed. 
We saw in the last chapter that this restriction is not just artificial but in fact incoherent because 
induction cannot be the basis for identifying design, there being no way to get that induction up 
and running. Nevertheless, for Bayesians wedded to Hume, it is convenient to block a Bayesian 
analysis that might implicate design from even getting started by denying that certain design 
hypotheses—like a design hypothesis that appeals to an unevolved intelligence to explain 
biological complexity—could even in principle admit independent empirical evidence.  
 
Thus, rather than face the problem of assessing prior probabilities in such cases, Bayesians 
wedded to Hume merely impose an additional restriction on the Bayesian framework stipulating, 
in effect, that the Bayesian framework may not be used for design hypotheses without 
independent empirical evidence of a designer. Strictly speaking, this restriction has no place 
within the Bayesian probabilistic apparatus (Bayes’s theorem works regardless where the 
probabilities associated with a design hypothesis come from—just plug in the numbers), but it is 
now increasingly being invoked against intelligent design. For instance, whereas Elliott Sober in 
his 1993 edition of Philosophy of Biology (and thus before intelligent design had intellectual 
currency) allowed considerable freedom for Bayesian design inferences in biology, in the 2000 
edition of that book (after intelligent design had created considerable waves) he closed off any 
design inference to a designer lacking independent empirical evidence. Thus, whereas the 1993 
edition gave intelligent design a lease on life, the 2000 edition took it away.  
 
The independent empirical evidence requirement raises a curious dilemma for Darwinism. 
Imagine space travelers show up loaded with unbelievably advanced technology. They tell us (in 
English) that they’ve had this technology for hundreds of millions of years and give us solid 
evidence of it (perhaps by pointing to some star cluster hundreds of millions of light years away 
whose arrangement signifies a message that confirms the aliens’ claim). Moreover, they 
demonstrate to us that with this technology they can atom by atom and molecule by molecule 
assemble the most complex organisms. Suppose we have good reason to think that these aliens 
were here at key moments in life’s history (e.g., at the origin of life, the origin of eukaryotes, the 
origin of metazoans, and the origin of the animal phyla in the Cambrian). Suppose further that in 
forming life from scratch the aliens would not leave any trace (their technology is so advanced 
that they clean up after themselves perfectly—no garbage or any other signs of activity would be 
left behind). Suppose, finally, that none of the facts of biology are different from what they are 
now. Should we think that life at key moments in its history was designed? 
 
We now have all the independent empirical evidence we could want for the existence of 
physically embodied designers capable of bringing about the complexity of life on earth. If in 
addition our best probabilistic analysis of the biological systems in question tells us that 
unguided natural processes could not have produced them with anything like a reasonable 
probability, is a Bayesian design inference now warranted? Could the design of life in that case 
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become more probable than a Darwinian explanation (probabilities here being interpreted in a 
Bayesian or likelihood sense) simply because independent empirical evidence attests to designers 
with the capacity to produce biological systems?  
 
This prospect, however, should raise a worry for Darwinists. The facts of biology, after all, have 
not changed. Yet design would be a better explanation if designers capable of, say, producing the 
animal phyla of the Cambrian could be attested through independent empirical evidence. Note 
that there’s no smoking gun here (no direct evidence of alien involvement in the fossil record, for 
instance). All we know by observation is that beings with the power to generate life exist and 
could have acted. Would it help to know that the aliens really like building carbon-based life? 
But how could we know that? Do we simply take their word for it? The data of biology and 
natural history, we assume, stay as they are now. 
 
But if design is a better explanation simply because of independent empirical evidence of 
technologically advanced space aliens, why should it not be a better explanation absent such 
evidence? If Darwinism is so poor an explanation that it would cave the instant space aliens 
capable of generating living forms in all their complexity could be independently attested, then 
why should it cease to be a poor explanation absent those space aliens? Again, the facts of 
biology themselves have not changed. 
 
Is there a way to salvage the independent empirical evidence requirement? Clearly it would be 
illegitimate to modify this requirement by ruling out circumstantial evidence entirely and 
permitting only direct “eye-witness” evidence of a designer actually manipulating the designed 
object in question. Even Elliott Sober would not go along with this proposal (see his 
Reconstructing the Past—to reconstruct the past we need circumstantial evidence). For Sober, 
circumstantial evidence could in principle support a biological design hypothesis. The important 
thing for Sober is that there be independent empirical evidence for the existence of a designer. 
But no smoking gun is required. In fact, to require a smoking gun in the sense of direct “eye-
witness” evidence would be just as bad for Darwinism as for intelligent design. The evidence is 
just as circumstantial for one as for the other.  
 
But once the independent empirical evidence for design can be circumstantial, establishing 
merely the existence of a designer with the causal power and opportunity to produce the effect in 
question (as in the alien thought experiment), we have exactly the same set of data to explain that 
we did before we acquired that evidence. The requirement for independent empirical evidence is 
therefore either vacuous (if it can be circumstantial) or prejudicial (if required to be direct). And 
in either case it obstructs inquiry into any actual design that might be present. If we require 
independent empirical evidence of design but don’t have it, we won’t see design even if it is 
there.  
 
(7) Implicit use of specifications. And finally we come to the most damning problem facing the 
Bayesian approach, namely, that it presupposes the very account of specification and rejection 
region that it was meant to preclude. Bayesian theorists see specification as an incongruous and 
dispensable feature of design inferences. For instance, Timothy and Lydia McGrew regard 
specification as having no “epistemic relevance” (Symposium on Design Reasoning, Calvin 
College, May 2001). At that same symposium Robin Collins, also a Bayesian, remarked: “We 
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could roughly define a specification as any type of pattern for which we have some reasons to 
expect an intelligent agent to produce it.” Thus a Bayesian use of specification might look as 
follows: given some event E and a design hypothesis D, a specification would assist in inferring 
design for E if the probability of E conditional on D is increased by noting that E conforms to the 
specification (which, á la Collins, is a “pattern for which we have some reasons to expect an 
intelligent agent to produce it”). 
 
But there’s a crucial difficulty here that Bayesians invariably sidestep. Consider the case of the 
New Jersey election commissioner Nicholas Caputo accused of rigging ballot lines. (This 
example appears in a number of my writings and has been widely discussed on the Internet. A 
ballot line is the order of candidates listed on a ballot. It is to the advantage of a candidate to be 
listed first on a ballot line because voters tend to vote more readily for such candidates.) Call 
Caputo’s ballot line selections the event E. E consists of 41 selections of Democrats and 
Republicans in sequence with Democrats outnumbering Republicans 40 to 1. For definiteness, 
let’s assume that Caputo’s ballot line selections looked as follows (newspapers covering the 
story to my knowledge never reported the actual sequence): 
 

DDDDDDDDDDDDDDDDDDDDDDRDDDDDDDDDDDDDDDDDD 
 
Thus we suppose that for the initial 22 times, Caputo chose the Democrats to head the ballot line; 
then at the 23rd time, he chose the Republicans; after which, for the remaining times, he chose 
the Democrats. 
 
If Democrats and Republicans were equally likely to have come up (as Caputo claimed), this 
event has probability approximately 1 in 2 trillion. Improbable, yes, but by itself not enough to 
implicate Caputo in cheating. Highly improbable events after all happen by chance all the time—
indeed, any sequence of forty-one Democrats and Republicans whatsoever would be just as 
unlikely. What, then, additionally do we need to confirm cheating (and thereby design)? To 
implicate Caputo in cheating it’s not enough merely to note a preponderance of Democrats over 
Republicans in some sequence of ballot line selections. Rather, one must also note that a 
preponderance as extreme as this is highly unlikely. In other words, it wasn’t the event E 
(Caputo’s actual ballot line selections) whose improbability the Bayesian needed to compute but 
the composite event E* consisting of all possible ballot line selections that exhibit at least as 
many Democrats as Caputo selected. This event—E*—consists of 42 possible ballot line 
selections and has improbability 1 in 50 billion. It’s this event and this improbability on which 
the New Jersey Supreme Court rightly focused when it deliberated whether Caputo had in fact 
cheated. Moreover, it’s this event that the Bayesian needs to identify and whose probability the 
Bayesian needs to compute to perform a Bayesian analysis.  
 
But how does the Bayesian identify this event? Let’s be clear that observation never hands us 
composite events like E* but only elementary outcomes like E (i.e., Caputo’s actual ballot line 
selection and not the ensemble of ballot line selections as extreme as Caputo’s). But whence this 
composite event? Within the Fisherian framework the answer is clear: E* is the rejection region 
(and therefore specification) that counts the number of Democrats selected in 41 tries. That’s 
what the court used and that’s what Bayesians use. Bayesians, however, offer no account of how 
they identify the events to which they assign probabilities. If the only events they ever 
considered were elementary outcomes, there would be no problem. But that’s not the case. 
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Bayesians routinely consider such composite events. In the case of Bayesian design inferences 
(and Bayesians definitely want to draw a design inference with regard to Caputo’s ballot line 
selections), those composite events are given by specifications. 
 
Let me paint the picture more starkly. Consider an elementary outcome E. Suppose initially we 
see no pattern that gives us reason to expect an intelligent agent produced it. But then, 
rummaging through our background knowledge, we suddenly see a pattern that signifies design 
in E. Under a Bayesian analysis, the probability of E given the design hypothesis suddenly jumps 
way up. That, however, isn’t enough to allow us to infer design. As is usual in the Bayesian 
scheme, we need to compare a probability conditional on design to one conditional on chance. 
But for which event do we compute these probabilities? As it turns out, not for the elementary 
outcome E, but for the composite event E* consisting of all elementary outcomes that exhibit the 
pattern signifying design. Indeed, it does no good to argue for E being the result of design on the 
basis of some pattern unless the entire collection of elementary outcomes that exhibit that pattern 
is itself improbable on the chance hypothesis. The Bayesian therefore needs to compare the 
probability of E* conditional on the design hypothesis with the probability of E* conditional on 
the chance hypothesis.  
 
The bottom line is this: The Bayesian approach to statistical rationality is parasitic on the 
Fisherian approach and can properly adjudicate only among hypotheses that the Fisherian 
approach has thus far failed to eliminate. In particular, the Bayesian approach offers no account 
of how it arrives at the events upon which it performs a Bayesian analysis. The selection of those 
events is highly intentional, and in the case of Bayesian design inferences needs to presuppose an 
account of specification. Specified complexity, far from being refuted by the Bayesian approach, 
is therefore implicit throughout Bayesian design inferences. 
 


