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Abstract

In many applications of information theory, information measures the re-
duction of uncertainty that results from the knowledge that an event has
occurred. Even so, an item of information learned need not be the oc-
currence of an event but, rather, the change in probability distribution
associated with an ensemble of events. This paper examines the basic
account of information, which focuses on events, and reviews how it may
be naturally generalized to probability distributions/measures. The re-
sulting information measure is special case of the Rényi information di-
vergence (also known as the Rényi entropy). This information measure,
herein dubbed the variational information, meaningfully assigns a numer-
ical bit-value to arbitrary state transitions of physical systems. The infor-
mation topology of these state transitions is characterized canonically by
a right and left continuity spectrum defined in terms of the Kantorovich-
Wasserstein metric. These continuity spectra provide a theoretical frame-
work for characterizing the informational continuity of evolving systems
and for rigorously assessing the degree to which such systems exhibit, or
fail to exhibit, continuous change.

1 The Fundamental Intuition
Ordinarily, information refers to the meaning or semantic content of a message.
Getting a handle on the meaning of a message, however, has proven difficult
mathematically. Thus, when mathematicians speak of information, they are
concerned not so much with the meaning of a message as with the vehicle by
which the message is transmitted from sender to receiver.
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The most common vehicle for transmitting messages is the character string.
The mathematical theory of information is largely about quantifying the com-
plexity of such strings, characterizing their statistical properties when they
are sent across a noisy communication channel (noise being represented as a
stochastic process that disrupts the strings in statistically well-defined ways),
preserving the strings despite the presence of noise (i.e., the theory of error-
correcting codes), compressing the strings to improve efficiency, and transform-
ing the strings into other strings to maintain their security (i.e., cryptography).
The underlying framework here can be generalized. A character string based

on a given alphabet sits in a space of such character strings. This space con-
stitutes a reference class of possibilities. In general, then, to communicate a
message from a reference class of possibilities means selecting a subset from it,
thereby identifying certain possibilities and ruling out the rest.
The fundamental intuition behind the mathematical theory of information

is now readily stated. Robert Stalnaker (1984: 85) puts it this way: “To learn
something, to acquire information, is to rule out possibilities. To understand the
information conveyed in a communication is to know what possibilities would
be excluded by its truth.” To be told that it is either going to rain or not rain
tomorrow is therefore to acquire no information. Rain-or-not-rain exhausts all
possibilities, so learning that it is either going to rain or not rain is uninforma-
tive. Consequently, the only way to convey information is by restricting that
range of possibilities. For instance, to be told that it will rain tomorrow does
indeed communicate information because it excludes the possibility of not-rain.
Information always presupposes a range of possibilities, and conveying infor-

mation means ruling out some of those possibilities. It follows that information
can be quantified. Indeed, the more possibilities that get ruled out, the more
information gets conveyed. Fred Dretske (1981: 4) elaborates: “Information
theory identifies the amount of information associated with, or generated by,
the occurrence of an event (or the realization of a state of affairs) with the re-
duction in uncertainty, the elimination of possibilities, represented by that event
or state of affairs.” Even so, to measure information it is not enough simply to
count the number of possibilities that were eliminated and present that number
as the relevant measure of information. The problem is that a simple enumer-
ation of eliminated possibilities tells us nothing about how those possibilities
were individuated.
Consider, for instance, the following individuation of poker hands: RF (a

royal flush) and ¬RF (all other poker hands). To learn that something other
than a royal flush was dealt (i.e., possibility ¬RF ) is clearly to acquire less
information than to learn that a royal flush was dealt (i.e., possibility RF ). A
royal flush is highly specific. We have acquired a lot of information when we
learn that a royal flush was dealt. On the other hand, we have acquired hardly
any information when we learn that something other than a royal flush was dealt.
Most poker hands are not royal flushes, and we expect to be dealt them only
rarely. Nevertheless, if our measure of information is simply an enumeration
of eliminated possibilities, the same numerical value must be assigned in both
instances since, in each instance, a single possibility is eliminated.
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It follows that how we measure information needs to be independent of
whatever procedure we use to individuate the possibilities under consideration.
The way to do this is not simply to count possibilities but to assign probabilities
to those possibilities. For a thoroughly shuffled deck of cards, the probability of
being dealt a royal flush (i.e., possibility RF ) is approximately .000002 whereas
the probability of being dealt anything other than a royal flush (i.e., possibility
¬RF ) is approximately .999998.
Probabilities by themselves, however, are not information measures. Al-

though probabilities distinguish possibilities by the amount of information they
contain, probabilities are inconvenient for measuring information. There are
two reasons for this. First, the scaling and directionality of the numbers as-
signed by probabilities needs to be recalibrated. We are clearly acquiring more
information when we learn someone was dealt a royal flush than when we learn
someone was not dealt a royal flush. And yet the probability of being dealt
a royal flush (i.e., .000002) is minuscule compared to the probability of being
dealt something other than a royal flush (i.e., .999998). Smaller probabilities
signify more information, not less.
The second reason probabilities are inconvenient for measuring information

is that they are multiplicative rather than additive. If we learn that Alice was
dealt a royal flush playing poker at one Las Vegas casino and that Bob was
dealt a royal flush playing poker at a different Las Vegas casino, the probability
that both Alice and Bob were dealt royal flushes is the product of the individual
probabilities. On the other hand, it is convenient for information to be mea-
sured additively so that the measure of information assigned to Alice and Bob
jointly being dealt royal flushes equals the measure of information assigned to
Alice being dealt a royal flush plus the measure of information assigned to Bob
being dealt a royal flush. Now, there is a straightforward mathematical way
to transform probabilities that circumvents both these difficulties, and that is
to apply a negative logarithm to the probabilities. Applying a negative loga-
rithm assigns more information to less probability and, because the logarithm
of a product is the sum of the logarithms, transforms multiplicative probability
measures into additive information measures.
Moreover, in deference to communication theorists, it is customary to use the

logarithm to the base 2. The negative logarithm to the base 2 of a probability
corresponds to the average number of binary digits, or bits, needed to identify
an event of that probability. Shannon showed that the binary code provides the
simplest and most cost-efficient way of handling information (in particular, it
uses the least memory and bandwidth).1 Hence, the most convenient way for
communication theorists to measure information is in bits. Consequently, the
logarithm to the base 2 has become the canonical logarithm for communication
theorists. Given an event A of probability p, the information associated with A
is therefore defined as

I(A) =def − log2 p.
1For a nice discussion of the privileged place of the binary code, see von Baeyer (2004:

30—31).

3



2 Entropy

Information theorists sometimes refer to the definition of information just given
as the surprisal associated with a particular event (the smaller the event’s prob-
ability, the bigger the “surprise” associated with its occurrence–see Dretske
1981: 10). Yet regardless of the designation, it is striking how little this notion
comes up directly in the mathematical theory of information. If the information
associated with a particular event A is to signify anything mathematically, then
I(A) = − log2 p is it. Nonetheless, this notion is almost entirely passed over in
favor of a different notion, called entropy. Entropy, rather than being associ-
ated with a particular event, is associated with a partition of events for a given
reference class of possibilities Ω. Given events A1, A2, ..., Am that are mutually
exclusive and exhaust Ω, and given that the probability of Ai is pi (1 ≤ i ≤ m,
p1 + p2 + · · · + pm = 1, no pi = 0), the entropy associated with this collection
of events is

H =def −
mP
i=1

pi log2 pi.

To be sure, I is tacitly embedded in this definition since this equation can
be rewritten as

H =
mP
i=1

piI(Ai).

But this reformulation of entropy adds no new insight, and the terms I(Ai)
have no independent significance within the mathematical theory of information.
Communication engineers interpret each of the Ais as a possible transmission
from an information source and thus interpret the entropy H as the average
information outputted by that source.
Why is H rather than I the preferred measure for information among com-

munication theorists? Fred Dretske (1981: 11) explains,

Communication engineers have no use for the surprisal value of a
particular state of affairs; they use the formula for calculating the
surprisal value only as a “stepping stone” in the calculation of the
average information generated by a source. This preoccupation with
averages is perfectly understandable. What the engineer wants is a
concept that characterizes the whole statistical nature of the infor-
mation source. He is not concerned with individual messages. A
communication system must face the problem of handling any mes-
sage that the source can produce.
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To this Warren Weaver (1949: 14) adds,

If it is not possible or practicable to design a system that can handle
everything perfectly, then the system should be designed to handle
well the jobs it is most likely to be asked to do.... This sort of
consideration leads at once to the necessity of characterizing the
statistical nature of the whole ensemble of messages which a given
kind of source can and will produce.

The communication engineer’s preoccupation with ensembles and averages,
however, obscures the fundamental intuition behind information. Dretske (1981:
50) therefore remarks,

Although the surprisal of a given event . . . and the amount of infor-
mation carried by a particular signal . . . are not significant quantities
in engineering applications of information theory (except, perhaps,
as mathematical intermediaries for the calculation of entropy), these
are the important quantities for the study of information, as com-
monly understood, and hence for the kind of cognitive studies that
depend on a semantically related concept of information.

The bottom line is that communication engineers downplay the surprisal and
focus principally on entropy, or average information.2

2For the purposes of this article it is enough to consider entropy as developed within
information theory. The notion, however, has deep connections to other areas in mathematics
and physics. With a change in logarithmic base, it is equivalent to S, the Maxwell-Botzmann-
Gibbs entropy: letW be the number of ways of arranging N atoms in cells numbered 1 through

m with Ni atoms in cell i. Then S = logeW , where W =
h
N !/

Q
1≤i≤mNi!

i1/N
. If we now

let pi = Ni/N , then by Stirling’s formula S comes out to approximately −
P
1≤i≤m pi loge pi.

See Yockey (1992: 66—67).
Entropy also plays an important role in ergodic theory, where it provides a necessary and

sufficient condition for two Bernoulli shifts to be metrically isomorphic (these are shift au-
tomorphisms on infinite product spaces where the factors of a given product space are all
identical and each constitutes a fixed finite set). In 1970 Donald Ornstein showed that en-
tropy completely classifies Bernoulli shifts up to isomorphism, thereby creating a revolution
in ergodic theory. In particular, he showed that if the entropies for the two spaces are the
same, then there is a measure-preserving map that also preserves the Bernoulli shifts. For a
textbook proof, see Cornfeld et al. (1982: 258—280). For the original article by Ornstein, see
Ornstein (1970).
Entropy also comes up in statistical decision theory. Consider two hypotheses, H1 and H2,

that induce probability measures µ1 and µ2 on Ω and are absolutely continuous with respect
to some privileged measure λ (not necessarily a probability) so that by the Radon-Nikodym
theorem, µ1 = f1dλ and µ2 = f2dλ. Statisticians then define the information of µ1 with

respect to µ2 as follows: I(µ1, µ2) =def
R
Ω f1(x) log

f1(x)

f2(x)
dλ(x). This integral is interpreted

as the mean information per observation under µ1 that discriminates in favor of H1 against
H2. If Ω is finite and λ is the counting measure, then fi(x) is the probability of x under µi.
Letting f1(x) = px and f2(x) = qx, this integral becomes

P
px log px −P px log qx. Clearly,

entropy assumes pride of place in this expression. See Kullback (1997: 5).
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The most common way to represent entropy is in terms of random variables
(for simplicity we’ll just consider finite probability spaces). Consider random
variables X : Ω −→ X and Y : Ω −→ Y with probability P on Ω. Let p(x) =
P(X = x), p(y) = P(Y = y), p(x, y) = P(X = x, Y = y), and p(x|y) = P(X =
x|Y = y) for x ∈ X and y ∈ Y. Then it is customary to define the following
types of entropy (individual, joint, and conditional):

H(X) =def −
P
x∈X

p(x) log2 p(x),

H(X,Y ) =def −
P
x∈X

P
y∈Y

p(x, y) log2 p(x, y),

H(X|Y ) =def −
P
x∈X

P
y∈Y

p(x, y) log2 p(x|y).

With these definitions in hand, it is also customary to define the mutual infor-
mation of X with respect to Y as follows:

I(X : Y ) =def −
P
x∈X

P
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
.

The mutual information I(X : Y ) is typically interpreted as measuring
how much the uncertainty in X is reduced by knowing Y (see Cover and
Thomas 1991: 20). It can also be rewritten as H(X) + H(Y ) − H(X,Y ) =
H(X)−H(X|Y ), which, by symmetry, also equals H(Y )−H(Y |X) = I(Y : X).
Accordingly, the reduction in uncertainty in X given Y is the same as the re-
duction in uncertainty in Y given X. Or, as Cover and Thomas (1991: 20)
put it, “X says as much about Y as Y says about X.”3 Note that I(X : X) =
H(X)−H(X|X) = H(X) (because H(X|X) = 0), indicating that the amount
of uncertainty reduced in X is maximal when X itself is known (this is as it
should be). Mutual information plays a key role in determining the capacity of
communication channels (see Cover and Thomas 1991: ch. 8).
The standard interpretation of mutual information raises two interesting

points about the interpretation of information generally. For one, it suggests
that information is properly defined as a relation between two items, one pro-
viding the backdrop against which the other provides novel input. The second
point is whether information should be interpreted as a reduction or an addi-
tion. The mutual information I(X : Y ) identifies the amount by which the
uncertainty in X is reduced by knowing Y , with the maximal reduction coming

3Christof Adami (2004: 6) elaborates on this symmetry: “The colon between X and Y in
the notation for the [mutual] information is standard; it is supposed to remind the reader that
information is a symmetric quantity: what X knows about Y , Y also knows about X.”
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when Y actually equals X. But it makes sense also to interpret information not
reductively but additively, so that what is measured is the amount by which X
extends, or adds to, our knowledge of Y . In that case, information is minimal
when X merely repeats Y but grows as X diverges from Y . H(X|Y ) fits that
bill, and could be interpreted as such a measure of information (though it is
usually just called conditional entropy).
I want next to characterize an information measure that is both relational

and additive in the sense just described, but that calculates the amount of infor-
mation associated with specific possibilities as opposed to the amount associated
with averages of possibilities, the latter being what information measures de-
fined in terms of entropy always do. This measure seems much closer to our
fundamental intuitions about information–indeed, it provides a very natural
generalization for the information measure described in section 1.4 Moreover,
by being defined within a Hilbert space formalism, this information measure is
mathematically tractable. The burden of this paper is to indicate how it might
be readily and widely applied.

3 Information as a Modified Variance
In generalizing the information measure described in section 1, let’s start by
reexamining that measure and then reformulating it in a way that makes clear
how the generalization should proceed. Given a probability space Ω and an
event A in Ω, we defined the information in A as the negative logarithm to the
base 2 of the probability of A. Let’s write this as

I(A|Ω) =def − log2P(A),

where P is the relevant probability on Ω. Given an additional event B in Ω,
this definition generalizes readily to the conditional information of A given B:

I(A|B) =def − log2P(A|B) = − log2
P(AB)

P(B)
.

Next, consider two real-valued functions defined on Ω: f1 =def
1

P(AB)1AB

and f2 =def
1

P(B)1B (1AB and 1B are indicator functions, equal to 1 on the set
in question, 0 outside). In addition, consider the two probability measures in-
duced by these functions: µ1 = f1dP and µ2 = f2dP. Then, µ1 ¿ µ2 (i.e., µ1 is
absolutely continuous with respect to µ2), and thus, by the Radon-Nikodym the-
orem, there is a function dµ1

dµ2
(the Radon-Nikodym derivative of µ1 with respect

to µ2) such that
dµ1
dµ2

dµ2 = dµ1, or equivalently,
dµ1
dµ2

f2dP =f1dP. Substituting

into this last equation for f1 and f2, we then get
dµ1
dµ2

1
P(B)1BdP =

1
P(AB)1ABdP,

which implies that dµ1
dµ2

= P(B)
P(AB)1AB.

4 See footnote 2.
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Accordingly, we can rewrite I(A|B) as follows:

I(A|B) = − log2
P(AB)

P(B)

= log2
P(B)

P(AB)

= log2
R
Ω

P(B)

P(AB)2
1ABdP

= log2
R
Ω

µ
P(B)

P(AB)
1AB

¶2
1

P(B)
1BdP

= log2
R
Ω

µ
dµ1
dµ2

¶2
dµ2

This suggests that for measures µ1 and µ2 with µ1 ¿ µ2, we can define the
information of µ1 with respect to µ2 as follows (assuming the Radon-Nikodym
derivative is square integrable):

I(µ1|µ2) =def log2
R
Ω

³
dµ1
dµ2

´2
dµ2.

For reasons that will become clear momentarily, let us refer to this information
measure as the variational information of µ1 given µ2.
How should we interpret this measure of information? Let Eµ denote the ex-

pectation operator for integrable functions on Ω with respect to µ, i.e., Eµ(f) =R
Ω
fdµ. Additionally, let Vµ denote the variance operator for square-integrable

functions on Ω with respect to µ, i.e., Vµ(f) = Eµ([f−Eµ(f)]
2). Then, because

µ1 and µ2 are probability measures and Eµ2(
dµ1
dµ2
) =

R
Ω

dµ1
dµ2

dµ2 =
R
Ω
dµ1 = 1,

it follows thatR
Ω

³
dµ1
dµ2

´2
dµ2 =

R
Ω

³
dµ1
dµ2
− 1
´2

dµ2 + 1 = Vµ2(
dµ1
dµ2
) + 1.5

In other words,

I(µ1|µ2) = log2[Vµ2(
dµ1
dµ2
) + 1],

making I(µ1|µ2), in essence, a disguised form of variance, measuring how much
µ1 varies or diverges from µ2.

6

5Note that
R
Ω

³
dµ1
dµ2

´2
dµ2 can also be rewritten as

R
Ω

dµ1
dµ2

dµ1, which can be useful for

certain purposes. Further, suppose that µ1 and µ2 are absolutely continuous with respect to

a measure λ. Then this last integral can be rewritten as
R
Ω

h
dµ1
dλ

/
dµ2
dλ

i
dµ1
dλ

dλ.
6A variance form of information is not without precedent. Indeed, it predates Shannon’s

formulation of information by twenty years. For a probability density f(x; θ) indexed by a
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It is significant that the variance term in I(µ1|µ2) takes the formR
Ω

³
dµ1
dµ2
− 1
´2

dµ2. Because the Radon-Nikodym derivative of a measure with

respect to itself is always identically 1, this variance term can be rewritten

as
R
Ω

³
dµ1
dµ2
− dµ2

dµ2

´2
dµ2. In other words, I(µ1|µ2) measures the mean square

variation of dµ1
dµ2

from dµ2
dµ2

with respect to µ2. But because
dµ2
dµ2
≡ 1, dµ2

dµ2
is

the uniform probability density with respect to µ2. We may therefore think of
I(µ1|µ2) as the mean square variation of the probability density of µ1 from the
uniform density with respect to µ2.
The variational information has the requisite properties that we have come

to expect from an information measure. Because the variance is always non-

negative, Vµ(
dµ1
dµ2
) + 1 =

R
Ω

³
dµ1
dµ2

´2
dµ2 is always greater than or equal to 1.

Moreover, by Jensen’s inequality, this quantity is strictly greater than 1 when
dµ1
dµ2

differs from 1 on a set whose µ2-measure is greater than 0. It follows that
I(µ1|µ2) is always greater than or equal to 0 and strictly greater than zero so
long as µ1 ¿ µ2 and these two measures are distinct.
Additivity of the variational information also follows. SupposeA1,A2, ...,An

are independent σ-algebras on Ω with respect to a probability measure µ (i.e.,
for A1 ∈ A1, A2 ∈ A2, ..., An ∈ An, µ(A1A2 · · ·An) = µ(A1)µ(A2) · · ·µ(An)).
Suppose that these σ-algebras together generate the σ-algebra A, and suppose
that µ and the additional probability measure ν are both defined on A. For
1 ≤ i ≤ n, let µi be the restriction of µ to Ai and suppose that each µi ¿ ν.
Then, µ equals the product measure µ1 ⊗ µ2 · · ·⊗ µn, and therefore

I(µ|ν) = I(µ1 ⊗ µ2 · · ·⊗ µn|ν)
= log2

R
Ω

³
dµ1
dν

dµ2
dν · · · dµndν

´2
dν

= log2
R
Ω

³
dµ1
dν

´2 ³
dµ2
dν

´2
· · ·
³
dµn
dν

´2
dν

= log2

·R
Ω

³
dµ1
dν

´2
dν

¸ ·R
Ω

³
dµ2
dν

´2
dν

¸
· · ·
·R
Ω

³
dµn
dν

´2
dν

¸
[*]

= log2
R
Ω

³
dµ1
dν

´2
dν + log2

R
Ω

³
dµ2
dν

´2
dν + · · ·+ log2

R
Ω

³
dµn
dν

´2
dν

= I(µ1|ν) + I(µ2|ν) + · · · I(µn|ν)
parameter θ, Ronald Fisher defined what is now known as the Fisher information: J(θ) =R h

∂
∂θ
ln f(x; θ)

i2
f(x; θ)dx. By the Cramér-Rao inequality, the mean squared error for any

unbiased esitmator T of the parameter θ is bounded below by the reciprocal of the Fisher

information, i.e., Vθ(T ) ≥ 1

J(θ)
. Indeed, if f(x; θ) is normally distributed with mean θ and

variance σ2, then J(θ) =
1

σ2
. Note that in this case the information increases as the variance

decreases. The opposite is the case with variational information. Variational information
and Fisher information are therefore not equivalent. For more on Fisher information, see
Thomas and Cover (1991: 326—331). For the article in which Fisher originally formulated
Fisher information, see Fisher (1925).
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Note that [*] follows from the previous line by independence and Fubini’s the-
orem.
Although the variational information was, strictly speaking, defined only for

pairs of probability measures µ1 and µ2 such that µ1 ¿ µ2 and such that the
Radon-Nikodym derivative dµ1

dµ2
was square integrable with respect to µ2, in fact

the variational information can be defined for all probability measures µ1 and µ2
on Ω: in case µ1 ¿ µ2 but

dµ1
dµ2

is not square integrable with respect to µ2, define
I(µ1|µ2) = ∞; in case µ1 is not absolutely continuous with respect to µ2, also
define I(µ1|µ2) = ∞ (assigning infinity in the latter case makes good intuitive
sense because for µ1 to assign nonzero probability to an event of probability
zero with respect to µ2 is to render probable under µ1 what is impossible under
µ2–such an eventuality suggests an infinite infusion of information).
The variational information is a special case of the Rényi information diver-

gence (also known as the Rényi entropy). For a random variable X defined on
Ω and density f induced by X on R, Alfred Rényi defined the quantity

hr(X) =def
1
1−r log2

R
Ω
[f(x)]rdx

for 0 < r < ∞ and r 6= 1. For measures µ1 and µ2 such that µ1 ¿ µ2, this
readily generalizes to

hr(µ1|µ2) =def
1
1−r log2

R
Ω

³
dµ1
dµ2

´r
dµ2.

The Rényi information divergence has, as r varies, a wealth of informational
measures embedded in it. Most of these, however, are not physically significant.
There are two notable exceptions: in the limit as r goes to 1, this quantity is just
the standard Shannon entropy of section 2 (as formulated for densities, however,
rather than for partitions of Ω). The other exception is the Rényi divergence
for r = 2, which, obviously, is equivalent to the variational information.7

4 Continuity Spectra
The temporal dynamics of many physical systems can be represented as trajec-
tories of measures µt for t in some real interval [a, b]. In such cases, it makes
sense to consider the variational information along these trajectories: I(µt|µs)
for a ≤ s < t ≤ b. For instance, within classical mechanics the trajectory of
a particle can be represented as a continuous path x(t) in a manifold Ω. As
a consequence, it can also be equivalently represented as a continuous path of
probability measures qua point masses δx(t) (continuity here being according to

7For a brief overview of the Rényi entropy/information divergence, see Cover and Thomas
(1991: 499—501). For the original formulation by Rényi, see Rényi (1961).
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the weak topology–measures converge in the weak topology iff their integrals
converge for all bounded continuous real-valued functions). Now, assuming that
x(t) doesn’t halt or double back on itself (i.e., it is one-to-one), it follows that
for all s 6= t in the interval [a, b], δx(t) is not absolutely continuous with respect
to δx(s) and hence I(δx(t)|δx(s)) = ∞. This, however, seems countertintuitive
since lims↑t δx(s) = δx(t) in the weak topology. The problem, then, is that the
variational information is not keeping track of any topological structure asso-
ciated with the underlying probability space Ω. Our next task, therefore, is to
coordinate the variational information with the topological structure of Ω.
Most of the interesting mathematical work on probability theory focuses on

separable metric spaces (specifically, on separable topological spaces that can
be metrized with a complete metric–these are known as Polish spaces).8 In the
sequel, we therefore focus on the separable metric space Ω with metric D whose
open sets induce the Borel σ-algebra B. If we now define M(Ω) as the set of
all probability measures on (Ω,B), thenM(Ω) is itself a separable metric space
in the Kantorovich-Wasserstein metric D (which induces the weak topology on
M(Ω)). For Borel probability measures µ and v on Ω,

D(µ, ν) = inf
©R

D(x, y)ζ(dx, dy) : ζ ∈ P2(µ, ν)
ª

= sup
©¯̄R

f(x)µ(dx)− R f(x)ν(dx)¯̄ : kfkL ≤ 1ª
where, in the first equation, P2(µ, ν) is the collection of all Borel probabil-
ity measures on Ω × Ω with marginal distributions µ on the first factor and
ν on the second, and where, in the second equation, f ranges over all con-
tinuous real-valued functions on Ω for which the Lipschitz seminorm is ≤ 1
(kfkL = sup {|f(x)− f(y)|/D(x, y) : x, y ∈ Ω, x 6= y}). Both the infimum and
the supremum on the right of these two equations define metrics. The first is
called the Wasserstein metric, the second the Kantorovich metric. Though the
two expressions appear quite different, they are known to be equal (see Dudley
1976).
The Kantorovich-Wasserstein metric D is the canonical extension to M(Ω)

of the metric D on Ω. It is fair to say that it extends the metric structure of
Ω as fully as possible to M(Ω). For instance, if δx and δy are point masses in
M(Ω), then D(δx, δy) = D(x, y). It follows that the canonical embedding of Ω
intoM(Ω), i.e., x 7→ δx, is in fact an isometry. But perhaps the best way to see
that D scrupulously extends the metric structure of Ω to M(Ω) is to consider
the following reformulation of this metric.
Let Mav(Ω) = { 1n

P
1≤i≤n δxi : xi ∈ Ω, n a positive integer}. It is readily

seen that Mav(Ω) is dense in M(Ω) in the weak topology. Note that the xis
are not required to be distinct, implying that Mav(Ω) consists of all convex

8See chapter 8 of Cohn (1996), which is devoted to Polish spaces and analytic sets. See also
Billingsley (1999)–the interesting theorems here on the convergence of probability measures
are proved for separable metric spaces.
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linear combinations of point masses with rational weights; note also that such
combinations, when restricted to a countable dense subset of Ω, form a count-
able dense subset of M(Ω) in the weak topology, showing that M(Ω) is itself
separable in the weak topology.
Now, for any measures µ and v in Mav(Ω), it is possible to find a positive

integer n such that µ = 1
n

P
1≤i≤n δxi and ν = 1

n

P
1≤i≤n δyi . Next, define

Dperm(
1
n

P
1≤i≤n δxi ,

1
n

P
1≤i≤n δyi) =def min{ 1n

P
1≤i≤nD(xi, yσi) : σ ∈ Sn}

where Sn is the symmetric group on the numbers 1 to n. Dperm looks for the
best way to match up point masses for any pair of measures in Mav(Ω) vis-
a-vis the metric D. It is straightforward to show that Dperm is well-defined
and constitutes a metric on Mav(Ω). The only point in need of proof here
is whether for arbitrary measures 1

n

P
1≤i≤n δxi and

1
n

P
1≤i≤n δyi in Mav(Ω),

and for any measures 1
mn

P
1≤i≤mn δzi =

1
n

P
1≤i≤n δxiand

1
mn

P
1≤i≤mn δwi =

1
n

P
1≤i≤n δyi ,

min{ 1n
P

1≤i≤nD(xi, yσi) : σ ∈ Sn} =
min{ 1

mn

P
1≤i≤mnD(zi, wρi) : ρ ∈ Smn}.

This equality does in fact hold. Crucial in its proof is Philip Hall’s well-known
“marriage lemma” from combinatorial theory.

Proposition. Dperm = D on Mav(Ω).

Remark. Because Mav(Ω) is dense in M(Ω), it follows that Dperm extends
uniquely to D on all of M(Ω).

Proof. For D, let us use inf
©R

D(x, y)ζ(dx, dy) : ζ ∈ P2(µ, ν)
ª
(i.e., the

Wasserstein as opposed to Kantorovich version of the metric). Let
µ = 1

n

P
1≤i≤n δxi and ν = 1

n

P
1≤i≤n δyi be arbitrary measures in Mav(Ω) rep-

resented with a common n. Consider ζ = 1
n

P
1≤i≤n δ(xi,yi). Then ζ ∈ P2(µ, ν).

This is true for any ordering of indices. We therefore assume that the indices
are so chosen that Dperm(µ, ν) =

1
n

P
1≤i≤nD(xi, yi). But this is preciselyR

D(x, y)ζ(dx, dy). It follows that Dperm ≥ D.
To prove the reverse inequality, consider an arbitrary ζ ∈ P2(µ, ν). ζ is

then of the form 1
n

P
1≤i,j≤n aijδ(xi,yj) where the n × n matrix [aij ] is doubly

stochastic (this is clear when the xis and yis are distinct among themselves;
for repetitions we may, by suitably averaging, choose corresponding rows and
columns identical, thus yielding a doubly stochastic matrix in the general case).
By the Birkhoff theorem, [aij ] can be written as a convex combination of per-
mutation matrices. Thus, for some t1, . . . , tm > 0 such that t1 + · · · + tm = 1
and n× n permutation matrices Π1, . . . ,Πm,

[aij ] = t1Π1 + · · ·+ tmΠm.
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Corresponding to the permutation matrices Π1, . . . ,Πm are permutations σ1, . . . ,
σm respectively for which

Z
D(x, y)ζ(dx, dy) =

1

n

X
1≤i,j≤n

aijD(xi, yj)

=
1

n

X
1≤r≤m

tr
X
1≤i≤n

D(xi, yσri).

But since Dperm(µ, ν) = min{ 1n
P

1≤i≤nD(xi, yσi) : σ ∈ Sn}, it follows that

Z
D(x, y)ζ(dx, dy) =

1

n

X
1≤r≤m

tr
X
1≤i≤n

D(xi, yσri)

=
X

1≤r≤m
tr

 1
n

X
1≤i≤n

D(xi, yσri)


≥

X
1≤r≤m

trDperm(µ, ν)

= Dperm(µ, ν).

Thus Dperm(µ, ν) ≤ D(µ, ν). This proves the result. ¥

With the Kantorovich-Wasserstein metric in hand, our task now is to co-
ordinate it with the variational information. Thus, for ε > 0 and probability
measures µ and ν in M(Ω), let us define

Iε(µ|ν) =def inf
©
I(ζ|ξ) : ζ, ξ ∈M(Ω), D(ζ, µ) ≤ ε, D(ξ, ν) ≤ ε

ª
.

We call Iε the variational information modulo ε. From this definition, it follows
that for all positive ε, Iε(µ|ν) ≤ I(µ|ν) and Iε(µ|ν) increases as ε ↓ 0.

Conjecture. lim
ε↓0

Iε(µ|ν) = I(µ|ν) for all µ and ν in M(Ω).

This conjecture seems likely to be true, but has no simple proof. The
problem is that it is not enough to find measures ζn and ξn that converge
to µ and ν in the weak topology (and thus with respect to the Kantorovich-
Wasserstein metricD). Rather, any such ζn and ξn must also be suitably chosen
so that the former is, in each case, absolutely continuous with respect to the
latter, and in a way that keeps I(ζn|ξn) as small as possible.
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To see what’s at stake, consider two point masses on the real line: δ0 and δη
for η positive and very close to zero. Then δ0 and δη, though neither is absolutely
continuous with respect to the other, are very close in the D metric: D(δ0, δη) =
|0− η| = η. Now consider two normal distributions on the real line: N(0, ε) and
N(η, ε)–normal distributions with means 0 and η respectively and variance ε
(ε much bigger than η). These measures are mutually absolutely continuous.
Moreover, they concentrate most of their mass at 0 and η respectively. Because
the probability densities of these distributions with respect to Lebesgue measure

are 1√
2πε

e−
x2

ε and 1√
2πε

e−
(x−η)2

ε , it follows that

I(N(0, ε)|N(η, ε)) = log2

∞Z
−∞

·³
1√
2πε

e−
x2

ε

´2
/

µ
1√
2πε

e−
(x−η)2

ε

¶¸
dx

= log2

∞Z
−∞

1√
2πε

e−
(x2+2xη−η2)

ε dx

This last integral converges to 1 as η ↓ 0, and so the variational information of
N(0, ε) given N(η, ε) goes to 0 as η ↓ 0. Note that to obtain this result, we
needed to convert point masses, which were not mutually absolutely continuous,
to suitable probability measures concentrated around those points that were mu-
tually absolutely continuous. To prove the full conjecture requires generalizing
this approach to arbitrary measures on arbitrary separable metric spaces.
Yet regardless of whether this conjecture is true, it does not affect how we

assess the continuity of probability paths. We define the continuity spectra of a
probability path µt for t ∈ [a, b] as as two real-valued functions on this interval.
The left continuity spectrum is the map that assigns to t ∈ [a, b] the value

I−(t) =def lim
ε↓0

lim
s↑t

Iε(µt|µs).

Alternately, the right continuity spectrum assigns to t ∈ [a, b] the value

I+(t) =def lim
ε↓0

lim
s↓t

Iε(µs|µt).

A probability path is by definition informationally continuous iff both the left
and right continuity spectra are identically zero. It is informationally left con-
tinuous iff the left continuity spectrum is identically zero. It is informationally
right continuous iff the right continuity spectrum is identically zero.

It is immediate that if x(t) is a continuous path in a Riemannian manifold
Ω with metric D induced by the Riemannian metric, then µt = δx(t) is informa-
tionally continuous (in order to approximate the variational information modulo
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ε, substitute 1
λ(Bε(x(t))

1Bε(x(t))dλ for δx(t); here λ is the measure derived from
volume element induced by the Riemannian metric).
On the other hand, if µt describes the probability distribution associated

with a state of a quantum system that is evolving according to the Schrödinger
equation, the associated left continuity spectrum will be nonzero at precisely
those places where the system assumes an eigenstate. For instance, consider a
photon hitting a filter polarized at a 45 degree angle. Before hitting the filter, it
had a fifty-fifty chance of passing through the filter. Suppose it passes through
the filter. Then I−(t) = 1 at t the instant that the photon hits the filter.
There is an irony here. In classical physics, the dynamics of a system is

described in terms of discrete particles, characterized mathematically as points,
that move continuously in a state space. Represented measure-theoretically,
these points correspond to distinct point masses that are not absolutely con-
tinuous with respect to one another. And yet, the dynamics of these systems,
when represented not just measure-theoretically but also in terms of the con-
tinuity spectra corresponding to the underlying topology, are informationally
continuous. By contrast, in quantum physics, the dynamics of a system is de-
scribed in terms of quantum states that induce probability densities that are
everywhere nonzero because quantum processes cannot be meaningfully local-
ized (see Gordon 2002). In consequence, the states induce probability measures
that are always mutually absolutely continuous; and yet, when a measurement
is taken, the new probability densities shift so dramatically that the dynamics
becomes informationally discontinuous.
The intuition underlying the continuity spectra is straightforward: observers

trying to assess information are always limited in their powers of observation by
the degree to which they can discriminate between distinct states of affairs.9 If
two states of affairs, though distinct in actuality, nonetheless are indistinguish-
able because our powers of observation do not enable us to resolve the difference,
then they effectively convey the same information, and, so, one state of affairs
adds no new information to the other. Accordingly, our mathematics should be
as parsimonious as possible in assessing information, always preferring among
indistinguishable states of affairs those that assign less information. To do oth-
erwise is to inflate our assessments of information because of idiosyncrasies in
the way we mathematically represent states of affairs rather than because of
any intrinsic difference that our powers of observation are able to ascertain and
that our mathematics is able faithfully to capture. In practice, we character-
ize our powers of observation to resolve distinct states of affairs in terms of an
ε-tolerance factor. Accordingly, measurements closer than some positive ε are
effectively indistinguishable. This accounts for the definition of the continuity

9Consider the following statement in the experimental psychology literature: “It is a well-
known fact that there are limits to the revolving power of the subject. Given a series of
stimuli which differ with respect to some discriminable aspect–some psychological attribute–
it is possible to select two stimuli which are so close together on the continuum that the
subject cannot report with any confidence which is the greater.” Quoted from Torgerson
(1958: 132). This book, though dated, contains useful insights relevant to the continuity
spectrum, especially in chapter 7, titled “The Differential-Sensitivity Methods.”
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spectra in terms of the variational information modulo ε.
To sum up, the variational information does not take into account the metric

structure of the underlying probability space and therefore suggests far more dis-
continuity than is actually present in probability paths. It’s therefore necessary
to factor in the metric structure of the underlying probability space, and this
is properly done by basing continuity spectra on the Kantorovich-Wasserstein
metric. These continuity spectra, because they are based on the Kantorovich-
Wasserstein metric and because this metric canonically extends the metric on
the underlying probability space Ω, define the canonical information topology
for probability paths. This information topology makes sense independently
of any additional information geometry that may be defined on M(Ω). It is
an open question in what sense the information geometries defined to date are
consistent with this information topology for probability paths (cf. Amari and
Nagaoka 2000).

5 Practical and Scientific Significance
We began this study by examining how to measure the information of an event
A with probability P(A) and concluded that the appropriate information mea-
sure in that case was I(A) = − log2P(A). This definition extended naturally to
pairs of events A and B, with I(A|B) = − log2P(A|B). This measure, however,
has only played an ancillary role in the mathematical theory of information as
developed by communication engineers (notably the line of research initiated
by Claude Shannon). Communication engineers need to assess the informa-
tion contained not in individual events but rather in ensembles of events that
partition a reference class of possibilities, where these possibilities are typically
thought to correspond to possible messages. This accounts for the preeminent
role of entropy in the mathematical theory of information, which provides an
averaged measure of information. In place of events A and B, entropy looks to
partitions of events A = {A1, . . . , Am} and B = {B1, . . . , Bm} and assigns an
averaged information measure H(A) = −PiP(Ai) log2P(Ai) =

P
P(Ai)I(Ai)

and H(A|B) = −Pi,j P(AiBj) log2P(Ai|Bj) =
P

i,j P(AiBj)I(Ai|Bj).
In defining H in terms of I, communication engineers have not so much gen-

eralized the information measure I as merely applied it to multiple events. By
contrast, extending I to the variational information significantly enriches I. It
is truly a generalization because events A map canonically to probability mea-
sures 1

P(A)1AdP, and the variational information applied to such probability
measures equals the ordinary information measure applied to the corresponding
events. It is, moreover, the canonical generalization in the sense that the varia-
tional information is the one instance of the Rényi information divergence that
faithfully extends the ordinary information associated with individual events.
The variational information, though implicit as a special case in the Rényi

information divergence (r = 2), has to date gone largely unnoticed and unappre-
ciated. That’s unfortunate because it comes up in perfectly ordinary contexts.
Consider the prospect of rain or not rain. If our approach to information is lim-
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ited to events, then given that we are in Seattle and given that the probability of
rain is .99 and the probability of no rain is .01, the amount of information gained
if we learn that it is sunny and not raining is − log2 .01 = 6.6439 bits. But now
consider a different scenario. This time we learn not that it isn’t raining, but
rather that we were wrong in thinking that we were in Seattle in the first place,
and that, instead, we are in the Sahara desert where the probability of rain
is .01 and the probability of no rain is .99. In that case, a simple calculation
shows that the variational information for the probability of rain or no rain in
the Sahara desert given the earlier probability of rain or no rain in Seattle is
log2 98.0101 = 6.6149 bits (the number 98.0101 being the integral of the square
of the pertinent Radon-Nikodym derivative). In other words, we acquired over
six and a half bits of information in learning that the pattern of rain is no longer
Seattle’s but rather the Sahara desert’s. The reference to “bits” here is entirely
appropriate: because the variational information is the canonical extension to
probability measures of the ordinary information for events, it makes sense to
think of the numerical values delivered by the variational information as bits.
The variational information not only gives a precise and privileged math-

ematical sense to the information we gain as our knowledge of probabilities
changes but also makes good intuitive sense of the information associated with
changing probabilities. Nevertheless, the real challenge facing the variational
information is to turn it into a practical tool that’s useful for science. What
follows are four potentially fruitful areas of application:

Example 1 Employing the variational information not just to track changes in
probabilities but also to track changes in the structure, configuration, and dynam-
ics of physical systems. These aspects of physical systems, though often capable
of being modeled by means of probability measures, need not be interpreted prob-
abilistically (in the sense of, for instance, sampling a random variable) but can
instead be interpreted information-theoretically in terms of generalized bits. In
the absence of a straightforward probabilistic interpretation, how helpful might
this approach be for generating scientific insights?

Example 2 Deriving variational and least action solutions by minimizing (or
maximizing) the variational information when it is applied to suitably indexed or
parameterized probability measures. Roy Frieden (1998) has, mutatis mutandis,
derived a good deal of physics from Fisher information, including many standard
results from the calculus of variations. How much of physics can be derived from
the variational information?

Example 3 Distinguishing scientific theories in terms of informational conti-
nuity and discontinuity. Classical physics consistently yields continuous infor-
mation spectra. By contrast, quantum physics yields discontinuous information
spectra. Likewise, classical evolutionary theories à la Darwin are gradualistic
and suggest continuous information spectra whereas saltational approaches to
evolution suggest discontinuous information spectra. To what extent can varia-
tional information make this distinction rigorous and provide genuine insights
into the processes responsible for life’s evolutionary history?
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Example 4 Assessing the sensitivity to perturbation as well as the robustness
of biophysical laws. Laws governing physics and biology seem fine-tuned to bring
about interesting features that would be absent if the laws were slightly different.
Alternatively, there are many features of the biophysical world that seem largely
insensitive to the contingencies of natural history. For instance, paleontologist
Simon Conway Morris (2003) finds that evolution reinvents the same organic
structures over and over and concludes that evolution is robustly constrained to
proceed along a limited number of fixed paths. Can the variational information be
used to gain insight into the sensitivity to perturbation as well as the robustness
of biophysical laws?
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