
The Conservation of Information:
Measuring the Cost of
Successful Search

William A. Dembski

Center for Science and Culture
Discovery Institute
Seattle, WA 98101

dembski@discovery.org

version 1.1, 6 May 2006

Abstract

Many spaces that need to be searched in the sciences are too unwieldy
for random search to stand any hope of success. Success instead requires
a nonrandom search. But how does one find a nonrandom search that
stands a good chance of success? Even to pose the question this way
suggests that such nonrandom searches do not magically materialize but
need themselves to be discovered by a process of search. The question then
naturally arises whether such a “search for a search” is any easier than
the original search. This paper establishes a conservation of information
theorem according to which the information required to find a successful
search is always at least as large as the information required to successfully
complete the original search. This result shows that information, like
money, obeys strict accounting principles, leaves a trail, and can only
originate from a prior information source.

1 Random Search
Successful search always incurs an information cost. The purpose of this brief
paper is to characterize, as an accountant might, the lower limit below which
that cost cannot be reduced. The baseline against which to calculate that cost is
random search. In a random search, individual elements from a search space are
independently sampled with respect to a given probability distribution. Thus,
for a sample of size 1, the probability of success will be some value p > 0, and
for a sample of size n the probability of success will be 1− (1− p)n.
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To derive this last term, take independent and identically distributed random
variables X1,X2,...,Xn that have probability p of landing in some set A. In that
case, the probability of successfully landing in A is

P(X1 ∈ A or X2 ∈ A or · · · or Xn ∈ A)

=
nX
i=1

P(X1 /∈ A and X2 /∈ A and · · · and Xi−1 /∈ A and Xi ∈ A)

=
nX
i=1

P(X1 /∈ A)P(X2 /∈ A) · · ·P(Xi−1 /∈ A)P(Xi ∈ A) [by indep.]

=
nX
i=1

(1− p)i−1p

= 1− (1− p)n.

In the known physical universe, the number of elements that can be sampled
from a search space is always strictly limited. At the time of this writing, the
fastest computer is the Department of Energy’s IBM BlueGene/L with over
130,000 processors and peaking at 367 teraflops.1 If we imagine each floating
point operation as able to take a sample of size 1, then this computer, even when
run over the duration of the physical universe (i.e., 12 billion years), would be
able to sample at most m = 1033 elements from the search space.
Seth Lloyd (2002) has shown that 10120 is the maximal number of bit opera-

tions that the known, observable universe could have performed throughout its
entire multi-billion year history. Thus, 10120 is an absolute limit on the sample
size of any search. In the sequel, we will treat m as the upper limit on the
number of elements that a given search can sample.
Given that a random search has probability of success pn = 1− (1− p)n, it

follows that as n gets arbitrarily large, pn converges to 1. Thus, with unlimited
sample size, random search becomes a perfect search. But sample size, as we just
noted, is always limited bym. Moreover, for virtually all interesting problems, p
tends to be so small that pm = 1−(1−p)m tends also to be very small (typically,
p is many orders of magnitude less than 1/m so that by Taylor’s expansion pm
is approximately mp, which is then still very small).
To be successful, a search will therefore need to do better than random

search. Such a nonrandom search will have probability qn of success for a sample
of size n (note that both pn and qn are monotonically increasing in n). But since
m is an upper limit on the number of elements that can be sampled from a search
space (whether randomly or nonrandomly), qm needs to be reasonably close to
1 if the nonrandom search is to stand a good chance of success. Let us next
turn to the information cost associated with such searches.

1See http://www.top500.org/lists/2005/11/basic (last accessed March 8, 2006).
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2 Added Information
Binary codes provide the simplest and most cost-efficient way of handling in-
formation (in particular, such codes use the least memory and bandwidth).2

Hence, the most convenient way for information theorists to measure informa-
tion is in bits. For this reason, the logarithm to the base 2 has become the
canonical logarithm for information theorists. Given an event A of probability
p, the information associated with A is therefore defined as

I(A) =def − log2 p.3

Consider now the random search S with probability p of success for a single
query (i.e., for a sample of size 1). Let Sn denote a sample of size n for this
search. In that case, the information associated with the success of this search
is I(Sn) = − log2 pn, where pn = 1 − (1 − p)n. Since we assume that n is
always bounded above by m and that p is many orders of magnitude less than
1/m (implying that 1 − (1 − p)n ≈ np), it follows that I(Sn) ≈ − log2 np. If
we now let T denote a nonrandom search with probability of success qn for a
sample of size n, then the information associated with the success of this search
is I(Tn) = − log2 qn.
Since pn and qn are monotonically increasing in n, the information associated

with these searches (i.e., I(Sn) and I(Tn)) goes down as n increases. This seems
counterintuitive because we tend to think that the larger the sample size of a
search, the better our chance of success and therefore the more information gets
generated. This intuition is correct, but the information measure just described
does not capture it. Rather, another type of information measure is needed to
capture it, namely, what may be called the added information. Given events A
and B of probability p and q respectively, the information that B adds to A is
defined as

I+(A : B) =def − log2 p+ log2 q = log2 q/p.4

An immediate consequence of this definition is that A adds no information
to itself, i.e., I+(A : A) = 0. Another consequence is that because q, as a prob-
ability, cannot exceed 1, I+(A : B) can never exceed I(A) = − log2 p. A third

2For the privileged place of the binary code, see von Baeyer (2004: 30—31).
3 Information theorists sometimes refer to the definition of information just given as the

surprisal associated with a particular event (the smaller the event’s probability, the bigger the
“surprise” associated with its occurrence–see Dretske 1981: 10). Given events A1, A2, ..., Am

that are mutually exclusive and exhaustive, and given that the probability of Ai is pi (1 ≤ i ≤
m, p1+p2+ · · ·+pm = 1, no pi = 0), information theorists define a more general information
measure, known as entropy :

H =def −
m

i=1
pi log2 pi.

For our purposes, the surprisal is all we need.
4Added information as defined here is the non-averaged form of what information theorists

call the relative entropy (also known as the Kullback-Leibler distance). See Cover and Thomas
(1991: 18) as well as the previous note.
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consequence is that because q can approach 0, I+(A : B) can assume arbitrar-
ily large negative values (thus enabling added information to model "stupid"
searches, which do worse than random search).
For the random search S, it now follows that increasing the sample size adds

information. Because 1− (1− p)n ≈ np, it follows that

I+(S1 : Sn) = log2[1− (1− p)n]/p ≈ log2 n.

This result makes good intuitive sense, indicating that increasing the sample
size of a random search by n adds only log2 n bits of information to the search.
Compare this to a nonrandom search T that for each query (i.e., each sample
of size 1) reduces the search space in half and thus removes half the uncertainty
(as in interval halving). In that case, the probability of a successful search with
a sample of size n is qn = 2n−1p. It follows that

I+(T1 : Tn) = log2 2
n−1p/p = n− 1.

In this case, increasing the sample size of the search by n also increases the
information by n.
Note, however, that this result only holds so long as 2n−1p 6 1. Accordingly,

the maximal amount of information that multiple queries (samples) can add to a
search occurs when multiple queries guarantee success, raising the probability of
success to 1. Thus, for an arbitrary search U such that a single query has prob-
ability p of success and such that n queries guarantee success with probability
1, I+(U1 : Un) = log2 1/p is maximal.
Finally, there is no reason to confine added information to queries from a

single search. Consider two searches, V and W . It makes good sense to ask the
degree to which n queries of search W add information to k queries of search V .
In that case, I+(Vk : Wn) = log2 q/p where q is the probability of success in n
queries of W and p is the probability of success in k queries of V . This formula
is well-defined mathematically. In practice, however, it will be significant only
if both searches (V and W ) employ the same criterion of success (e.g., two
biological searches where success means locating the same family of functional
proteins).

3 The Cost of Success
Let us now return to the main point of interest, namely, how a nonrandom search
T adds information to a random search S. As before, suppose S has probability
p of success for a single query and thus probability pn = 1− (1− p)n of success
for n queries. Hence, I(S1) = − log2 p and I(Sn) = − log2 pn ≈ − log2 np. This
last (approximate) equality holds for n 6 m provided that m is the maximal
number of queries (i.e., maximal sample size) and provided that p is, as we are
assuming, many orders of magnitude less than 1/m.
Next consider the nonrandom search T . Given that T has probability of

success qn for n queries, I(Tn) = − log2 qn. Since m is the maximal number

4



of queries, we focus on the added information I+(Sm : Tm) = log2 qm/pm,
which calculates the amount of information that Tm adds to Sm. We assume
that both searches, S and T , employ the same criterion of success and that
T is significantly more effective at conducting a successful search than S (i.e.,
qm À pm).
Since an m-query search is equivalent to a 1-query search consisting of an m-

query block, we simplify our notation and drop all m-subscripts. Accordingly,
Sm becomes, S, Tm becomes T , qm becomes q, pm becomes p, and I+(Sm : Tm)
becomes I+(S : T ).
A further simplification will now be useful in the sequel. By the previous

simplification, S and T are one-query searches with probabilities p and q respec-
tively of success where 0 < p¿ q 6 1. Here q is so much bigger than p that T ’s
success is largely assured whereas S is highly unlikely to be successful. Now,
because S is a random search, if q < 1, it could happen that S succeeds but
T fails. Mathematically, however, it ends up being easier to fold S’s successes
into T ’s successes. This is easily accomplished by redefining T as the search
that succeeds whenever either the original T or S or both succeed.5 Doing so
entails no loss of generality since S is the baseline against which the success of
T is gauged.
If T now has this property (i.e., a success for S entails a success for T ),

we can consider the modified searches S∗ and T ∗ where, in sampling from the
underlying search space, one ignores the cases where T ∗ does not succeed. In
other words, S∗ and T ∗ are formed from S and T by rejection sampling, i.e.,
by rejecting those samples of T (and thus the corresponding samples of S) for
which the T -search fails.
When this is done, it immediately follows that T ∗ succeeds with probability

1 and S∗ succeeds with probability p
q , which is strictly greater than p since q is

here assumed to be strictly less than 1. Accordingly, for the modified searches
S∗ and T ∗,

I+(S
∗ : T ∗) = − log2 p

q + log2 1 = log2 q/p,

which is just the original added information I+(S : T ). The bottom line is that
in analyzing added information of searches, it is enough to consider searches
that guarantee success with probability one in relation to random searches with
a suitable probability of success (for S∗ that probability of success is p

q ).
In the sequel, therefore, if we rewrite S for S∗ and T for T ∗, we can limit

ourselves to one-query searches for which the probability of success of the ran-

5 It could be that T succeeds whenever S does. In that case, there is no need to redefine
T . On the other hand, it could be that they don’t. In that case, q, the probability that a
redefined T succeeds, will need to be adjusted up. For instance, suppose that S and T are
stochastically independent searches. In that case, let A represent success for S on a given
query and let B represent success for T on that same query. Then the probability that S or T
(or both) succeed on a given query is given by P(A or B) = P(A)+P(B)−P(A and B). But
P(A) = p, P(B) = q, and by independence P(A and B) = P(A)×P(B) = pq. Accordingly,
P(A or B) = p + q − pq = q + p(1 − q), which is the new, slightly bigger q-value for the
redefined T .
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dom search S is p (formerly p
q ) and the probability of success of the nonrandom

search T is 1.

4 The Search for a Search
The key question that now needs to be answered is, What is the source of
the information that makes T a more effective search than S? Where does this
information come from? Short of magically materializing, this information must
itself derive from a search. But since this information is already embedded in a
search, namely T , it must derive from searching a collection of searches in which
both S and T reside.
To see what’s at stake, imagine that you are on an island with buried trea-

sure. The island is so large that a random search (S) is highly unlikely to
succeed. Fortunately, you have a treasure map that will guide you to the trea-
sure with unfailing accuracy. In other words, the treasure map allows you to
perform a nonrandom search (T ) that has probability 1 of success.
But where did you get the treasure map? Treasure maps reside in a larger

collection of all conceivable treasure maps. The vast majority of these maps will
not lead to the treasure. How then did you happen to find the right one among
all conceivable treasure maps? What special information did you have so that
you could find the right map?
Given that the nonrandom search T is itself the result of a search (i.e., a

search for a search), we can now perform the same analysis as we did on the
original search space. Accordingly, just as the original search required a baseline
random search, so we need to consider a baseline random search over this higher-
level space of searches. Denote such a random search by S1, S2, S3,... where
the Sis are independent and identically distributed taking values in the space
of searches to which S and T belong. This higher-level random search S will be
consistent with the original random search S, which serves as the baseline for
searching the original space, provided that, on average, the Sis yield a search
whose probability of success on the original space is no greater than p.
A few further simplifications are now in order: let the searches S and T

represent success and failure on the binary set {0, 1}, 0 for failure, 1 for success.
For S the probability of success is p and for T it is 1. It follows that we can,
without loss of generality, represent the searches S and T as numbers (i.e.,
probabilities) from the unit interval [0, 1], S as p and T as 1.
Accordingly, as with lower-level search, higher-level search can now be rep-

resented as a probability distribution, though this time on the unit interval [0, 1]
instead of on the binary set {0, 1}. Moreover, since the Sis yield a search on the
original space that, on average, has probability no greater than p of success, for
the random search S1, S2, S3,..., the Sis follow some probability distribution μ

on [0, 1] such that the mean of μ does not exceed p, i.e.,
R 1
0
xdμ(x) 6 p. For

many applications, one can think of this integral as
R 1
0
xf(x)dx where f is a

probability density function on the unit interval.
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Now, for any number n, let n∗ denote the number of Sis in S1, S2,..., Sn
which successfully locate the search T . Alternatively, since we are, without loss
of generality, representing searches on the original space as probabilities that
these searches succeed, n∗ denote the number of Sis in S1, S2,..., Sn that attain
the probability 1 (T being a search that succeeds with probability 1).
By the Strong Law of Large Numbers it now follows that 1n(S1+S2+· · ·+Sn)

converges almost everywhere to some number less than or equal to p (because
the Sis are μ-distributed and μ has mean/expectation less than or equal to p).
Also by the Strong Law of Large Numbers, the stochastic measures 1

n(δS1 +
δS2 + · · · + δSn) converge almost everywhere weakly to μ (see Parthasarathy
1967: 52—53; for stochastic measures in general see Kallenberg 1986).6

It follows that the limit as n goes to infinity of the fraction n∗

n is the limit as
n goes to infinity of the probability that 1

n(δS1 + δS2 + · · ·+ δSn) assigns to the
singleton {1} (which, in our representation, corresponds to the searches that
succeed with probability 1 on the original space). And this number, because
1
n(δS1 + δS2 + · · ·+ δSn) converges almost everywhere weakly to μ, is bounded
above by μ({1}) (see Billingsley 1999: 16). S therefore models a search for a
search and is distributed as the probability measure μ. Accordingly, μ({1}) is
the probability that S successfully locates a search over the original space that
has probability 1 of successfully searching the original space.
Now, for all probability measures μ on the unit interval whose mean is less

than or equal to p, the maximum probability that μ can assign to {1} is p, which
is attained for the probability measure μ∗ = (1 − p)δ0 + pδ1. More formally,
sup{μ({1}) |

R 1
0
xdμ(x) 6 p} is attained for μ∗ = (1− p)δ0+ pδ1, which assigns

probability p to {1}. To see this, note that the probability measures in question
need to balance two competing objectives: they require their mean/expectation
to fall in the interval [0, p] and they require maximizing the amount of mass
concentrated in the singleton {1}. Since 0 < p < 1, μ∗ = (1− p)δ0 + pδ1 is the
probability measure that most perfectly fits this bill.
Having identified S as a random search for a search that locates the original

random search S, the next order of business is to identify a nonrandom search
for a search, call it T , that locates the original nonrandom search T . By an
earlier simplification, we limit our nonrandom searches to those that succeed
with probability 1. Accordingly, T guarantees success of the original search with
probability 1 and T , in turn, guarantees success of the search for this search (i.e.,
T ) with probability 1. But since we are representing T as a probability measure
ν on the unit interval [0, 1] and since we are representing T as the probability
1 in this interval, for T to guarantee the success of finding T with probability 1
means that ν must assign all its probability to the set {1}, which in turn means
that ν is just the point mass δ1.
It follows that I+(S : T ) equals the negative logarithm of the probability

6The delta functions here are point masses. Because the points to which these delta func-
tions assign mass here are themselves given by stochastic searches, the probability measures
that arise from taking convex linear combinations of these delta functions are stochastic prob-
ability measures, i.e., they are probability measures which vary stochastically in the way they
assign probability.
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that S assigns to {1}, which, as we have seen, is minimized when S is represented
by the measure μ∗ = (1− p)δ0+pδ1. And since μ∗ assigns probability p to {1},
this means that I+(S : T ) > − log2 p for all higher-level random searches S
that locate S and all higher-level nonrandom searches T that locate T . But
I+(S : T ) = − log2 p. We have thus proven the following theorem.

5 The Conservation of Information Theorem
Theorem (Conservation of Information). Suppose S and T are searches
over a given search space, S being a random search with probability p of success
in a single query and T being a nonrandom search with probability 1 of success
in a single query. Suppose further that S and T are searches over the space
of searches in which S and T reside so that S on average locates a search of
the original space that with probability no more than p successfully searches
the original space and that T with probability 1 locates a search of the original
space what with probability 1 successfully searches the original space. Then the
information that T adds to S is at least as great as the information that T adds
to S, i.e.,

I+(S : T ) > I+(S : T ).

Moreover, by a suitable choice of S, this inequality becomes an equality.

Remarks. (1) Earlier we saw that there is no loss of generality assuming that T
is a perfect search, i.e., one that succeeds with probability 1. In general, however,
T may be less than perfect, with probability q of success where q is much bigger
than p but nonetheless strictly less than 1. In that case, the Conservation of
Information Theorem still holds with I+(S : T ) = log2 q/p serving as a lower
bound for I+(S : T ).
(2) This theorem depends on representing searches as probabilities of suc-

cess. Granted, such a representation loses a lot of information about actual
searches. In evolutionary computing, for instance, an actual search requires an
initialization, a fitness, an update rule, and a stop criterion. All such infor-
mation, however, merely adds to the problem of finding a higher-level search
that locates a successful lower-level search. By representing searches in terms
of probability of success, I’m not merely distilling the essence of these searches
but in fact being conservative about the amount of information required to find
a higher-level search that locates a successful lower-level search.

In concluding this paper, I want briefly to discuss the significance of the
Conservation of Information Theorem. For most interesting search problems,
random search is highly unlikely to succeed. For a search to succeed, it therefore
needs to be a nonrandom search. Such a search, however, does not float in from
nowhere. If it is to be explained at all, it must be explained as the outcome of
a search in its own right. But what sort of search could that be?
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A random search for such a search is, according to the Conservation of
Information Theorem, even less likely to succeed than a random search of the
original search space. Moreover, a nonrandom search for such a search, insofar
as it succeeds, adds, again according to the Conservation of Information Theory,
at least as much information as the original nonrandom search. Obviously, going
to still higher-level searches won’t resolve the problem since there is a regress,
and the problem only gets worse as we go up the search hierarchy:

I+(S : T ) 6 I+(S : T ) 6 I+(S : T ) 6 · · · .

The problem of explaining the information in the original nonrandom search
T that enables it to succeed is therefore not explained away by a hide-the-pea
game in which this information is shuffled off to higher-level searches. Rather,
this problem must be dealt with on its own terms. In practice, there are only
two options here: the information is created as an act of intelligence or it is the
unintelligent (mechanical) outworking of preexisting information.
Either option raises questions about the ultimate source of that information.

According to Douglas Robertson (1999), the defining feature of intelligence is its
ability to create information. Yet, if an act of intelligence created the informa-
tion, where did this intelligence come from? Was information in turn required
to create it? Very quickly this line of questioning pushes one to an ultimate in-
telligence that creates all information and yet is created by none (see Dembski
2004: ch. 19, titled “Information ex Nihilo”).
On the other hand, if the information is the mechanical outworking of pre-

existing information, the Conservation of Information Theorem suggests that
this preexisting information was at least as great in the past as it is now (this
being the information that allows the present search to be successful). But then
how do we make sense of the fact (if it is a fact) that the information in the
universe was less in the past than it is now? Indeed, our present universe, with
everything from star systems to living forms, seems far more information-rich
than the universe at the moment of the Big Bang.
Holmes Rolston (1999: 352—353, 357) offers some interesting insights in this

respect. Writing on the “genesis of information,” he notes,

There are no humans invisibly present (as an acorn secretly con-
tains an oak) in the primitive eukaryotes, to unfold in a lawlike
or programmatic way.... On Earth, there really isn’t anything in
rocks that suggests the possibility of Homo sapiens, much less the
American Civil War, or the World Wide Web, and to say that all
these possibilities are lurking there, even though nothing we know
about rocks or carbon atoms, or electrons and protons suggests this
is simply to let possibilities float in from nowhere.... The informa-
tion (in DNA) is interlocked with an information producer-processor
(the organism) that can transcribe, incarnate, metabolize, and re-
produce it. All such information once upon a time did not exist
but came into place; this is the locus of creativity. Nevertheless, on
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Earth, there is this result during evolutionary history. The result
involves significant achievements in cybernetic creativity, essentially
incremental gains in information that have been conserved and elab-
orated over evolutionary history. The know-how, so to speak, to
make salt is already in the sodium and chlorine, but the know-how
to make hemoglobin molecules and lemurs is not secretly coded in
the carbon, hydrogen, and nitrogen.... Can one claim that what
did actually manage to happen must always have been either proba-
bly probable, or, minimally, improbably possible all along the way?
Push this to extremes, as one must do, if one claims that all the pos-
sibilities are always there, latent in the dust, latent in the quarks.
Such a claim becomes pretty much an act of speculative faith, not
in present actualities, since one knows that these events took place,
but in past probabilities always being omnipresent.... Unbounded
possibilities that one posits ad hoc to whatever one finds has in fact
taken place–possibilities of any kind and amount desired in one’s
metaphysical enthusiasm–can hardly be said to be a scientific hy-
pothesis. This is hardly even a faith claim with sufficient warrant. It
is certainly equally credible and more plausible, and no less scientific
to hold that new possibility spaces open up en route.

In light of Rolston’s remarks, the Conservation of Information Theorem
pushes us in either of two directions: (1) We explain the information in the
universe as the creative act of an intelligence that needs no information in turn
to explain it. (2) We explain the information in the universe as the mechanical
outworking of the physical laws and processes by which the universe operates
and in which this information has always resided (even if concealed from our
eyes).
Rolston’s point is that empirical evidence does not support (2). Accordingly,

he regards adherence to (2) not as a scientific inference but as an act of spec-
ulative faith. On the other hand, he leaves open the possibility that empirical
evidence might support (1). The Conservation of Information Theorem provides
conceptual space within which to marshal and assess such evidence.

Acknowledgment. I’m indebted to Robert Marks for the notion of added
information developed in this paper.
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